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COMPUMAG 2003 Chairman’s Welcome

Welcome to COMPUMAG 2003, the 14th Conference on the Computation of Electric
and Magnetic Fields!

In the 27 years since the first COMPUMAG Conference in 1976 at Oxford, we have
seen the society and the conference continue to grow in numbers, in significance and in
international renown and respect. We are honored, therefore, to carry on what has
become a well-established tradition of presenting the leading research and thought in the
area of computational electromagnetics.

Because of its high standards and rigorous review process, the Conference has become the
place to present in our field. This year 429 papers were approved for presentation in 8
oral sessions and 32 poster sessions. The contributors represent 30 different countries.
Our deep thanks go to the editorial board and to the co-chairs Jon Webb and Dennis
Giannacopoulos, who did an outstanding job.

And welcome to Saratoga Springs, New York! Those of us fortunate to live and work in
New York’s Capital District can take advantage of some of the best opportunities in the
United States for research and education; cultural, historical and recreational resources;
and small cities and towns where neighbors still don’t lock their doors. Nearby research
institutions and universities include Rensselaer, GE Global Research Laboratories, Knolls
Atomic Power Laboratory, IBM Research Laboratory and others. New York City,
Boston, and Montreal, with their rich historical and cultural resources, are all within a
few hours’ drive. Finally, there is the peace and friendliness of smaller towns and villages,
like Saratoga Springs, where you are sure to enjoy the activities we have planned; we
hope you will also take time to explore on your own.

COMPUMAG 2003 offers lively scientific exchange to charm the intellect and convivial
activities to warm the heart. Welcome!

Prof. Sheppard J. Salon

COMPUMAG 2003 Chairman
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COMPUMAG 2003 Editorial Board
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COMPUMAG 2003 Technical Program 

Tuesday, July 15, 2003 
 
 
 

 8:00 – 10:15 

Oral Session  

 
Devices 
Saratoga Ballroom 

 10:45 – 12:00 

Poster Session  

 Numerical Techniques II: Novel Methodologies 

 Coupled Problems II: Deformations 

 Machines II: Induction Motors 

 Statics II: Magnetostatics 

 1:30 – 2:45 

Poster Session  

 Optimization II 

 Waves II 

 Devices II: NTD, Microwave Cavities 

 Quasistatic II: Eddy Current 

 3:15 – 5:00 

Oral Session  

 
Materials 
Saratoga Ballroom 

 5:15 – 6:15 

Panel Session  

 
Topic To Be Announced 
Saratoga Ballroom 

 
 



Devices Chairman
Tuesday, July 15, 8:00am - 10:15am Dr. José Cardoso

Fields, Focussing and Aberrations in Electrostatic Accelerator Tubes II - 2
H.R. McK. Hyder, C.W. Trowbridge P94805
Vector Fields Ltd
Oxford - UK  
  
Finite Element Simulation of Head / Media Interactions in Perpendicular
Recording II - 4

Thomas Schrefl, Hermann Forster, Manfred E. Schabes, Byron Lengsfield P65497
Vienna University of Technology - Solid State Physics
Vienna - Austria  
  
Scalar and vector potentials' coupling on nonmatching grids for the
simulation of an electromagnetic brake II - 6

B. Flemisch, Y. Maday, F. Rapetti, B.I. Wohlmuth P41724
Universite de Nice et Sophia-Antipolis - Laboratoire J.-A. Dieudonne
Nice - France  
  
Numerical Analisys of Frequency Characteristic Fluctuations of
Semiconductor Devices Caused by Random Doping Fluctuations II - 8

Isaak D. Mayergoyz, P. Andrei P21591
University of Maryland - Department of Electrical and Computer Engineering
College Park, MD - USA  
  
Propulsion and Guidance Simulation of HTS Bulk Ropeless Linear
Elevator II - 10

Kinjiro Yoshida, Hirokazu Matsumoto P44560
Kyushu University - Graduate School of Information Science and Electrical Engineering,
Department of Electrical and Electronic Systems Engineering
Fukuoka - Japan

 

  
Study of the Influence of Leakage Fields on the Inchworm Actuator II - 12
Y. Bernard, Sheppard J. Salon, Philippe Bouchilloux P15892
Rensselaer Polytechnic Institute - ECSE Deptartment
Troy, NY - USA  

Numerical Techniques II: Novel methodologies Chairman
Tuesday, July 15, 10:45am - 12:00pm Dr. Hajime Igarashi

Investigation of EEG Problems using the Superposition Principle in the
Finite Volume Method II - 14

Y.Q. Xie, X.S. Ma, J.S. Yuan, J. Zou P94225
Peking University
Beijing - China  

Saratoga Springs, New York USA 
July 13 - 17, 2003
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A Meshless Collocation Method based on Radial Basis Functions and
Wavelets II - 16

S.L. Ho, Shiyou Yang, H.C. Wong P61644
Hong Kong Polytechnic University - Dept. of Electrical Engineering
Kowloon - Hong Kong  
  
A Fast Volume Integral Equation Solver Based On A Novel 2-Level Dual
Rank SVD Algorithm II - 18

N.A. Ozdemir, J.F. Lee P31977
Ohio State University - ElectroScience Lab.
Columbus, OH - USA  
  
Research on Weighted Functions of Meshless Methods in Electromagnetic
Field Analysis II - 20

Jianxin Liu, Zhenhua Liu, Xiang Cui P41278
North China Electric Power University
Hebei – China  
  
Point Collocation Method Based on the FMLSRK Approximation for
Electromagnetic Field Analysis II - 22

D.W. Kim, H.K. Kim, Y.S. Kim P72397
Korea Electrotechnology Research Institute(KERI) - Advanced Power Apparatus Group
Changwon - South Korea  
  
The Natural Element Method for Electromagnetic Field Computation II - 24
Hong-Kyu Kim, K.Y. Park, Chang-Hwan Im, Hyun-Kyo Jung P22398
Korea Electrotechnology Research Institute(KERI) - Advanced Power Apparatus Group
Changwon - South Korea  
  
Quasi-2D FE Analysis of Hybrid Stepping Motor(HSM) II - 26
Ki-Bong Jang, Hyun-Hun Shin, Ju Lee P83311
Hanyang University - Department of Electrical Engineering, Energy Conversion Lab.
Seoul – Korea  
  
Isotropic and anisotropic electrostatic field computation by means of the
cell method II - 28

M. Bullo, F. Dughiero, M. Guarnieri, E. Tittonel P23759
Università degli Studi di Padova - Dipartimento di Ingegneria Elettrica
Padova – Italy  
  
A Finite Element Method with Grouped Smooth Constraints II - 30
Xixin Yan, Jianyun Chai P54979
Tsinghua University - Department of Electrical Engineering
Beijing - China  
  
Formulation of admittance boundary conditions for the solution of
frequency domain problems by FIT II - 32

Lorenzo Codecasa, Vito Minerva, Marco Politi P45318
Politecnico di Milano - Dipartimento di Elettronica e Informazione
Milan - Italy  

ixRecord of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



A New Multilevel Subgridding Scheme for Two-Dimensional FDTD
method II - 34

Charles T.M. Choi, Shu-Hai Sun P65220
I-Shou University - Department of Electrical Engineering
Kaohsiung county - Taiwan, ROC.  
  
A Subgridding Scheme for Two-Dimensional FDTD(2,4) Method II - 36
Charles T.M. Choi, Shu-Hai Sun P85721
I-Shou University - Department of Electrical Engineering
Kaohsiung County - Taiwan, ROC  
  
Design of the Recording Head considering the Field Gradient in High
Density Magnetic Recording II - 38

H. Won, Gwan Soo Park, Y.Y. Kim, G.P. Han P75832
Korea Maritime University - Dept. Electrical Engineering
Busan - South Korea  
  
Closed-Form Approximation of Electromagnetic Green's Function for
Layered Media with Variable Source Point II - 40

Leonid B. Proekt, Andreas Cangellaris P85166
University of Illinois at Urbana-Champaign – Dept. of Electrical and Computer Engineering
Urbana, IL - USA  

Coupled Problems II: Deformation Chairman
Tuesday, July 15, 10:45am - 12:00pm

Finite Element Simulation of Micro Electro Mechanical Systems (MEMS)
by Strongly Coupled Electro Mechanical Transducers II - 42

Miklos Gyimesi, Dale Ostergaard, Ilya Avdeev P91303
University of Pittsburgh - Department of Mechanical Engineering
Pittsburgh, PA - USA  
  
Magneto-mechanical strong coupling model and experiment for a giant
magnetostrictive actuator II - 44

Rongge Yan, Bowen Wang, Shuying Cao, Ling Weng, Fuigui Liu, Weili Yan P71810
Hebei University of Technology - School of Electrical Engineering
Tianjin - China  
  
Stability of augmented staggered method for electromagnetic and
structural coupled problem II - 46

Yoshikazu Tanaka, Syuji Furuki, Eiji Shintaku, Yukio Fujimoto P12014
Hiroshima University - System Safety Lab., Graduate School of Engineering
Hiroshima - Japan  
  
About the Implementation of Mechanical Flaking Effects Inside a Layer
Structure During a Coupled Finite Element Analysis II - 48

Christian Grabner, Erich Schmidt P93705
Graz University of Technology - Institute of Electrical Machines and Drives
Graz - Austria  

Saratoga Springs, New York USA 
July 13 - 17, 2003
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Finite Element Computation of the Deformation of Ferromagnetic
Material taking into account Magnetic Forces and Magnetostriction II - 50

Lieven Vandevelde, Johan Gyselinck, Marc A.C. De Wulf,
Jan A.A. Melkebeek P94282
Ghent University -- Electrical Energy Laboratory (EELAB)
Gent - Belgium  
  
Investigation of Inverse Magnetostriction Effects in Electric Machinery II - 52
O.A. Mohammed, S. Liu P65339
Florida International University - Department of Electrical & Computer Engineering
Miami, FL - USA  
  
Modelling of Magneto-Mechanical Phenomena by Using Shell Elements II - 54
M. Hadjali, M. Besbes, F. Bouillault P95281
LGEP - Supelec
Gif-sur-Yvette - France  
  
Electromagnetic force density in a ferromagnetic material II - 56
François Henrotte, Hans Vande Sande, Geoffrey Deliége, Kay Hameyer P45391
Katholieke Universiteit Leuven, ESAT-ELECTA - Electrical Engineering Department
Leuven-Heverlee - Belgium  

Machines II: Induction Motors Chairman
Tuesday, July 15, 10:45am - 12:00pm

Comparison of 2D and 3D Transient FEM Calculations of a Skewed
Induction Machine II - 58

Markus Johnen, Christian Kaehler, Gerhard Henneberger P91570
Aachen University - Department of Electrical Machines
Aachen - Germany  
  
Investigation of Induction Motor Zero Order Magnetic Stresses by a
Finite Element Model II - 60

Timothy McDevitt, David Jenkins, Michael Jonson P41193
Penn State University - Applied Research Laboratory
State College, PA - USA  
  
Calculation of Negative Torque Caused by Slot Ripples of Induction
Motor II - 62

Katsumi Yamazaki, Yoshihisa Haruishi, Takahiro Ara P72617
Chiba Institute of Technology - Dept. of Electrical Engineering
Tsudanuma - Japan  
  
Calculation of Force Excitations in Induction Machines with Centric and
Excentric positioned Rotor using 2D Transient FEM II - 64

Christoph Schlensok, Gerhard Henneberger P92227
Aachen University - Dept. of Electrical Machines
Aachen - Germany  
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Effects of saturation on the forces in induction motors with whirling
cage rotor II - 66

Asmo Tenhunen, Timo P. Holopainen, Antero Arkkio P32699
Helsinki University of Technology - Laboratory of Electromechanics
HUT - Finland  
  
Analysis of Voltage Distribution in Stator Windings of Induction Motor
Driven by IGBT PWM Inverter II - 68

Don-Ha Hwang, Dong-Sik Kang, Yong-Joo Kim, Sung-Woo Bae,
Dong-Hee Kim P23262
Korea Electrotechnology Research Institute (KERI) - Industry Applications Research Lab
Changwon - Korea  
  
Loss Distribution of 3-phase Induction Motor with PWM Inverter drive II - 70
Jeong-Jong Lee, Young-Kyun Kim, Kyung-Ho Ha, Jung-Pyo Hong,
Don-Ha Hwang P13189
Changwon National University - Dept. of Electrical Eng.
Changwon - Korea  
  
A Discrete Fourier Transform Based Method to Compute Steady State
Operation of Induction Motors Using Complex Finite Elements II - 72

B. Laporte, S. Mezani, Norio Takorabet P84722
GREEN - ENSEM - INPL
Vandoeuvre-lès-Nancy - France  
  
Finite element analysis of a double winding induction motor with a special
rotor bars topology II - 74

A.M. Oliveira, P. Kuo-Peng, N. Sadowski, F. Rüncos, R. Carlson,
Patrick Dular P35268
GRUCAD/EEL/CTC - UFSC
Florianópolis - Brazil  
  
Calculation of the Rotor Bar Resistance and Leakage Inductance in a
Solid Rotor Induction Motor with a One-Slot Model II - 76

Lale T. Ergene, Sheppard J. Salon P25278
Magsoft Corporation
Troy, NY - USA  

Statics II: Magnetostatics Chairmen

Tuesday, July 15, 10:45am - 12:00pm Dr. Paul Leonard
Dr. Igor Tsukerman

The Mutual Inductance of Two Thin Coaxial Disk Coils in Air II - 78
Slobodan Babic, Cevdet Akyel, Sheppard J. Salon P21106
Ecole polytechnique de Montreal
Montreal - Canada  

  

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Two Mixed Hybrid Formulations For Magnetostatics in Unbounded
Domains II - 80

Leila Hamouda, Bernard Bandelier, Françoise Rioux-Damidau P81515
Université Paris Sud - U2R2M
Orsay - France  
  
Application of Spheroidal Functions in Magnetostatics II - 82
Alexander V. Kildishev P91337
Purdue University
West Lafayette, IN - USA  
  
Magnetic field Analysis of Iron-Core Reactor Coils by Finite Volume
Method II - 84

J. Zou, Q. Huang, J.S. Yuan, X.S. Ma P11854
Tsinghua University - Department of Electrical Engineering
Beijing - China  
  
Solenoidal Current Flows for Filamentary Conductors II - 86
Derek N. Dyck, J.P. Webb P11266
McGill University - Dept. of Elec. and Comp. Engineering
Montreal - Canada  
  
Discretisation of Boundary Integral Equations by Differential Forms on
Dual Grids II - 88

Stefan Kurz, Oliver Rain, Volker Rischmuller, Sergej Rjasanow P51972
Robert Bosch GmbH
Stuttgart - Germany  
  
Development of 3-D Read/Write Simulation System II - 90
Naoya Fujiwara, Kiminari Shinagawa, Kohei Ashiho, Koji Fujiwara, Norio
Takahashi P61879
Okayama University - Dept. Electrical and Electronic Eng.
Okayama - Japan  
  
Key problems in Element-Free Galerkin Method for Electromagnetic
Field Computations II - 92

Suzhen Liu, Qingxin Yang, Haiyan Chen, Weili Yan P72666
Hebei University of Technology
Tianjin - China  
  
Simplified Magnetic Moment Method Applied to Current Transfomers
Modeling II - 94

Fleur Janet, Jean-Louis Coulomb, Christian Chillet, Patrick Mas P12483
Laboratoire d'électrotechnique de Grenoble -- INPG/UJF-CNRS UMR 5529 ENSIEG
Saint-Martin-d'Hères - France  

  

xiiiRecord of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Computation of Voltage Driven, Current Dependent Ferrite Inductors
using FEM II - 96

W. Renhart, Christian Magele, K. Preis P13466
Graz University of Technology
Graz - Austria  
  
Hybrid Numerical Techniques for Power Transformer Modeling: A
comparative analysis validated by measurements II - 98

M. Tsili, Antonios G. Kladas, P. Georgilakis, A. Souflaris, C. Pitsilis, J.
Bakopoulos, D. Paparigas P73287
National Technical University of Athens - Department of Electrical & Computer Engineering
Athens - Greece  
  
Computation of the magnetostatic field by means of a mixed analytical-
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Università di Udine - DIEGM
Udine - Italy  
  
Automatic Generation of Sizing Models for the Optimisation of
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R. Scorretti, Noël Burais, J.P. Masson P75386
Ecole Centrale de Lyon
Ecully - France  
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A Novel Auto-tuning Algorithm for the Integrated RBF Network of
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Graz - Austria  
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Applying continuum design sensitivity analysis combined with standard
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Dong-Hun Kim, K.S. Ship, Jan K. Sykulski P13365
University of Southampton - Department of Electronics and Computer Science
Southampton - United Kingdom  
  
3D optimal shape design of magnetic pole in permanent magnet assembly
for MRI taking account of gradient coil field II - 114

Yingying Yao, Chang Seop Koh, Dexin Xie P33379
Chungbuk National University - School of Electrical & Computer Engineering
Chungbuk - Korea  
  
Support Vector Machines - a Promising Tool for Optimal Design of
Electromagnetic Devices II - 116

Jacek Starzyński, Stanisław Osowski, Stanisław Wincenciak P24137
Warsaw University of Technology
Warsaw - Poland  
  
Design of Inserted Core Type Slotless PMLSM for Detent Force
Minimization by using Neural Network II - 118

Mi-Yong Kim, Jae-Yun Moon, Gyu-Tak Kim P74649
Changwon National University - Dept. of Electrical Engineering
Changwon - Korea  
  
A Pruning Method for Neural Networks and its Application for
Optimization in Electromagnetics II - 120

Frederico G. Guimaraes, Jaime A. Ramírez P24556
Universidade Federal de Minas Gerais -- Escola de Engenharia, Departamento de
Engenharia Eletrica
Belo Horizonte - Brazil
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Universidade Federal de Minas Gerais
Minas Gerais - Brazil  

  
Conceptual Framework for Numerical Wave Propagation Schemes II - 150
Timo Tarhassari, Lauri Kettunen P24463
Tampere University of Technology -- Institute of Electromagnetics
Tampere - Finland  

  
Current and near field calculations for cellular base-station collinear
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Devices II: NTD and Microwave Cavities Chairman
Tuesday, July 15, 1:30pm - 2:45pm Dr. Francis Piriou
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and Experiment

II - 158

Yuji Gotoh, Norio Takahashi P31625
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Okayama - Japan  
  
Eigenmode Simulation of Electromagnetic Resonator Cavities with
Gyrotropic Materials II - 160

Stefan Feigh, Markus Clemens, Rolf Schuhmann, Thomas Weiland P12921
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Hongik University - Electrical Eng. Department
Chungnam - S. Korea  
  
TLM and FEM Analysis of a Mode Stirred Chamber Excited by Wires II - 166
D. Weinzierl, R. Jacobs, Arnulf Kost, Adroaldo Raizer P62777
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Wuhan - China  
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Fukuyama - Japan  
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Efficient Technique for 3-D Finite Element Analysis of Skin Effect in
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Fields, Focussing and Aberrations in Electrostatic Accelerator Tubes

H.R.McK. Hyder                                               C.W.Trowbridge
Department of Physics, Oxford University, Oxford  Vector Fields Ltd, Oxford, OX5 1JE

Abstract – Electrostatic field distributions and particle trajectories
have been computed using a standard software package for a number
of geometries typical of the accelerator tubes used in modern
electrostatic accelerators. The results have been used to investigate the
focussing action and the effect of lens aberrations on the subsequent
emittance and brightness of the beam. A novel aspect is the calculation
of field distributions in the tube interior close to the edges of thick
electrodes . 

INTRODUCTION

Small electrostatic accelerators are in widespread use for
research, material modification, ion implantation and
analysis including carbon dating. The quality of the beam
on target is critical to all these applications. It depends on
the ion source and on the optical elements,  the most critical
of which is the accelerator tube. The first order focussing
action of an accelerator tube is simple and well known [1].
Empirical corrections to the formula for an electrostatic
immersion lens [2] result in prescriptions adequate for most
purposes. But it has long been known that these simplified
models overlook effects, such as aberration at the entrance
to the tube, which cannot always be ignored.

 Rose et al. [1] reported calculations of field distributions
and particle trajectories that took into account the geometry
of the entrance region and field variations inside the tube
due to finite electrode thickness. They concluded that this
effect might be significant in tubes with small bore
diameters.  However they did not compute the exact form
of the longitudinal voltage ripple at different distances from
the axis as a function of thickness, pitch and bore radius.

Fig. 1 Simple accelerator tube geometry

With the object of determining the mesh size and
precision necessary to obtain reliable predictions of
aberration and emittance growth, we have examined the 
optics of an accelerator tube consisting of a number n+1 of
equispaced plane electrodes, of thickness t, bore radius a
and pitch p, as shown in Fig. 1. At either end a region
bounded by conductors at the potential of the first and last
electrodes is sufficiently long not to perturb the field
distribution extending beyond the tube proper. A cylindrical
boundary of radius a+2p extends from each electrode to its
neighbour. A uniform field of V/(p-t), where V is the

constant voltage between electrodes, defines the potential
of these boundaries. The computational challenge is to
calculate the fields to high accuracy so that sufficiently 
smooth values of higher derivatives can be obtained to
evaluate aberration integrals [3]. The use of an analytic
expression fitted to the numerical results enables third order
ray tracing to be compared with general ray tracing to aid
confidence in the numerical finite element solution.

ENTRANCE & EXIT LENS

The mesh size necessary in the field program for adequate
precision over the region r < a has been specified so that
particle trajectories and the effects of third order aberrations
can be found with confidence. The results for a series of
rays originating from points on the axis, with varying
values of initial energy eV0 and initial transverse
momentum, have been compared with data obtained from
the field distribution derived from the analytic expression
for the axial field.

An analytic model for the case without internal plates is 
obtained by superimposing the fields from two circular
apertures for which Laplace’s equation can be solved
exactly using oblate spherical coordinates [3]. The resulting
formula for the axial electric field distribution appropriate
to Fig. 1 is: 

2 1 2 1 ( ) ( )( ) arctan arctan2
V V V V a z d z dz zV z d a a a a

 (1)

eV1 is set equal to the energy of the incoming particle as is 
customary in electron optics and eV2 the final energy. A
comparison of the results from a FE computation (t=0) and
(1) are shown in Fig. 2. In Table 1 the results for the
optical properties of the tube are shown both by solving the
particle equations of motion, truncated to third order
expansions of the potentials defined in (1), and the general
case based on the full FE solution.

t p

V2V1

2a

d

Fig. 2 FE Solution comparison to (1)

Table I suggests that the analytic representation can be
used with confidence for the optical properties but for real
tubes with thick electrodes a full solution will be necessary,
see next section. The effect of aberration on the beam spot 
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in the image plane is shown by a phase space emittance
diagram where the ray angle  is plotted versus radius at z
= Zi, see Fig. 3. The solid line is the image computed from
the general ray tracing using the full FE solution and the
dashed line uses the third order optical parameters.

TABLE I: COMPUTED OPTICAL PARAMETERS (t=0)

Key: Length Unit is cm. Zi Gaussian image plane, M linear magnification,
Ma angular magnification and Cs spherical aberration coefficient.
Columns 2 & 3 - third order using (1) for the fields, 4&5 using full FE
solution. Cs computed both by using the classical formula based on third
order perturbation theory [3] and by fitting a ray bundle in the object plane
to 3r Cs .

Optical
Parameter

Paraxial Third Order General
with no plates 

General
with Plates 

Zi 92.656 92.656 92.574 91.858

M -0.418 -0.418 -0.418 -0.413

Ma -0.721 -0.721 -0.722 -0.730

Cs -fitted 9114.0 8889.0 8988.0

Cs– [3] 9180.0

Fig. 4. Axial field Ez across two pitches for r/a = 0, 0.2, 0.4, 0.6, 0.8,
0.9. [t/a = 0.1, t/p = 0.04, Ez (t=0) = 1.2 kV/mm]

Using these calculated field distributions we have computed
the trajectories for a range of particles.  Trajectories for the
extreme case of low energy particles (10 keV) traversing a
tube with t/a = 0.5 and t/p = 0.1 are shown in Fig. 5. It is
obvious that particles starting near the electrodes are
strongly affected, those near the axis much less so. There is
evidence of severe spherical aberration. 

Fig. 3. Emittance plot in the image plane (radians) vs r (cm)

Fig. 5. Trajectories for 10 keV particles with zero initial transverse
velocity in a tube with t/a = 0.5, t/p = 0.1. 

RIPPLE

Field distributions inside tubes with finite electrode
thicknesses have also been computed using an optimised
mesh. Away from the ends of the tube the field distribution
is periodic and is completely determined by the ratios t/a
and t/p. The resulting periodic nature of Ez for values of r 
from 0 to 0.9a is indicated in Fig. 4 for typical values of t, a
and p (t=1 mm, a = 10 mm, p = 25 mm). Near the axis the
ripple is nearly sinusoidal, but as r increases the ripple
amplitude increases, higher harmonics become important
and aberrations and focussing are affected in consequence.
For higher values of t/a, even the field on axis is no longer
sinusoidal. Rose et al. [1] have suggested that the radial
variation of ripple voltage can be approximately
represented by an exponential dependence of amplitude on
the ratio of bore radius to pitch and a sinusoidal variation
with z. At fixed bore radius (a), the radial variation is
expressed by a zero order Bessel function. The higher
harmonics in the Fourier series which describes the z 
variation were neglected, but our data suggest that this may
not be justified for large values of t/a. 

SUMMARY

The modern computational techniques have been used to
assess the accuracy of accelerator tube optical properties
using a simple analytic model. We report, for the first time,
accurate values of the fields close to the edges of thick 
electrodes and aberrations using a FE package. In the
extended paper, the authors will discuss focussing and 
aberrations due to the inclined fields used to suppress
secondary particles; in particular a full 3-D analysis will be
applied to tubes with spiral and non-cylindrical geometries.
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Abstract—Finite element micromagnetics is combined with fast
boundary element techniques to calculate the magnetostatic interactions
between the recording head, the data layer, and the soft underlayer in
perpendicular magnetic recording. The finite element method is highly
suitable to model the physical microstructure of the media such as realis-
tic grain shapes and intergranular phases. The fast boundary method
provides an efficient and accurate means to simulate the mutual interac-
tions between the moving magnetic parts. Fully time dependent simula-
tions of the recording process treating both head and media
micromagnetically and taking into account the moving head were per-
formed. 

INTRODUCTION

The design and optimization of ultra high density storage
technologies requires a precise understanding of the magneti-
zation processes that occur during the formation of the bit pat-
terns. A possible route towards storage densities of one Tbit/
in² is perpendicular recording [1,2]. A bit is stored by a small
number of vertically magnetized grains. A weak exchange
coupling between the grains may be beneficial to improve the
thermal stability [3], but can decrease the switching speed [4].
Media models therefore have to take into account variable
intergrain exchange interactions, in order to assist design opti-
mization by micromagnetic simulations. The writer involves a
write pole, a return pole, and the soft underlayer. The magnetic
path between the write pole and the return pole is bridged by
the soft underlayer which thus becomes an integral part of the
recording head. The write field properties and the associated
magnetization processes in the soft underlayer were calculated
previously using finite difference techniques and finite ele-
ment techniques [5]. 

 A common approach to include moving parts into electro-
magnetic finite element simulations is the use of sliding grids
and Mortar elements [6]. An alternative approach is the use of
the use hybrid finite element / boundary element (FEM/BEM)
techniques [7]. For magnetic recording simulations FEM/
BEM methods have the advantage that no mesh is needed

between the different magnetic parts, and the magnetization
dynamics can be calculated in the rest frame of each part.

In this paper we present a novel algorithm that combines
the finite element method with fast boundary element tech-
niques to simulate the fully integrated system: moving head,
data layer, and soft underlayer. The microstructural features of
the data layer can be taken into account in full detail using the
finite element method. Different techniques to accelerate the
boundary element method and to reduce the memory are com-
pared.

COMPUTATIONAL TECHNIQUES

 The basic equation describing magnetization dynamics is
the stochastic Gilbert equation

, (1)

where J is the magnetic polarization vector,  the gyro-
magnetic ration, and  the Gilbert damping constant. The
effective field Heff is the sum of the exchange field, the anisot-
ropy field, the external field, and the magnetostatic field. Hth
is a random, thermal field that mimics the effect of thermal
fluctuations at non-zero temperature. 

Magnetostatic field calculation  The magnetostatic field is
computed from a magnetic scalar potential using a FEM/BEM
formulation proposed by Fredkin and Koehler [8]: The poten-
tial is split into two parts U = U1 + U2. U1 follows from the
Poisson equation, and U2 is a double layer potential given by
the surface integral over a dipole sheet with density U1.

Media model  Columnar grains are constructed from
Voronoi cells. The grains are further subdivided into tetrahe-
dral finite elements. The magnetization and the magnetic sca-
lar potential are interpolated by linear shape functions. The
exchange coupling between neighboring grains and the mag-

J
t

----- J– Heff Hth+ Js
----J J

t
-----+=
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netostatic interactions across grain boundaries are modeled
using special elements for narrow gaps [9]. 

Fast boundary method  The discretization of the surface
integral for the evaluation of U2 leads to a fully populated
matrix. Different methods were used to sparsify the BEM
matrix and to accelerate the matrix vector multiplication. We
compared hierarchical matrices [10] computed by adaptive
cross approximation [11] and the Barnes and Hut tree code
[12].

Time integration  We apply a multiple time step method
for the integration of (1). The effective field contains near
field and far field contributions. The far field part is the poten-
tial U2 that is generated from remote surface triangles. We
found that it is sufficient to evaluate the far field every 10th
time step only. In between U2 is extrapolated linearly.

RESULTS

Fig. 1 shows a bit pattern as calculated from magnetic
recording simulations. The data layer consists of 2048 grains.
The total number of finite elements is 4 105. The head velocity
was 20 m/s. Fig. 2 compares the memory requirements for the
different BEM methods.  

Fig. 1. Simulated bit patterns using a tapered write pole. On the left hand side
the color code maps the magnetization direction. The right hand side is shows
a top view of the grain structure.

Fig. 2. Memory requirements for the BEM matrix versus the number of
boundary nodes for the full matrix method, the tree code, and the supermatrix
(hierarchical matrix method).

 We compared the CPU time required for the setup phase
and for the evaluation of U2 (BEM matrix times a vector). The
tree code requires the least memory and has the shortest setup
phase. A fast setup is essential since the BEM data has to be
computed every time step. The calculation of the tree code
data takes only a quarter of the CPU time required to compute
the supermatrix. However, the evaluation of the matrix vector
product by walking the tree takes considerable more time than
the hierarchical matrix method. This can be compensated
using a multiple time step time integration scheme. The most
promising approach is the use of  hierarchical matrices for the
self interactions within the data layer and the soft underlayer
and the tree code for the interactions between the moving head
and the media.

Work supported by the Autrian Science Fund (Y132PHY).
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��������—We present a method for the simula-
tion of the dynamical behavior of a coupled magneto-
mechanical system. We consider a model based on the
T -Ω formulation of the eddy currents problem for the
magnetic part and on the motion equation of a mov-
ing rigid body for the mechanical part. The coupled
system is solved with an iterative procedure.

Introduction

In a coupled magneto-mechanical system, the forces due
to the magnetic field contribute to the free structure mo-
tion and the resulting variation in the structure configu-
ration modifies the distribution of the magnetic field and
so of the induced forces. To take simultaneously into ac-
count the electromagnetic and mechanical equations it is
necessary to compute the global magnetic force acting on
the moving part of the system, through the numerical
evaluation of the magnetic field. Here, we study a system
where, attached to an elastic spring suspended from the
lid of a rigid box, a conductor of mass m oscillates within
the magnetic field supported by a ferromagnet.

The algorithm we consider is based on an “explicit”
coupling procedure: at each time step, the magnetic force
obtained from the field solution is inserted in the mechan-
ical equation to compute the displacement. The latter
is imposed to the moving part for the next step of the
magnetic field calculation. A finite difference scheme is
adopted to discretize the ordinary differential equation
which accounts for the conductor position. The magnetic
field is computed by applying the finite element method
to the T -Ω formulation of the eddy current problem. This
formulation allows to use a scalar function (Ω) in the com-
putational domain and a vector quantity (T ) only in the
conducting parts. We propose to approximate these two
quantities on different meshes, in order to deal with mov-
ing conductors, and to couple them by means of the mor-
tar element method [4], [5]. The proposed method is a
valid alternative to remeshing or boundary elements.

The model

The mathematical model describing the eddy current
problem in the conductors at low frequencies is given by
the quasi-stationary Maxwell’s equations [1]. In this pa-
per, we restrict ourselves to the magnetic field approach.
The space IR3 is decomposed in the conducting region
Vc and the external region IR3 \ Vc. Denoting by H , B,
J and E the magnetic field, the magnetic flux density,
the current density and the electric field, respectively, the
quasi-stationary Maxwell’s equations in Vc read:

∇×H = J, ∇×E = −∂tB, ∇ · B = 0 . (1)

The densities and the fields are linked by the constitutive
properties, i.e., B = µH , J = σE, where µ > 0 is the

magnetic permeability and σ ≥ σ̄ > 0 stands for the elec-
tric conductivity. Moreover, we assume that the material
parameters are time independent and associated with lin-
ear isotropic media, and that the given external source
Js is zero within the conducting regions. As a result, we
obtain the following field equations in IR3 \ Vc:

∇×H = Js, ∇ · B = 0, B = µH . (2)

The problem is well posed by adding regularity conditions
at infinity and suitable interface conditions on ∂Vc. In
particular, [H ]c×nc = 0, [B]c · nc = 0, where nc is the
outer normal on ∂Vc, and [v]c stands for the jump of v on
∂Vc. Additionally to the boundary conditions, we have
to impose suitable initial values for the vector fields at a
given time t0. The initial condition on B has to satisfy
∇·B = 0 and [B] ·n = 0 at any interface. By introducing
artificial boundary conditions, we can work on a bounded
domain V . For simplicity, we assume that Vc is a simply
connected polyhedral subdomain of V and V c ⊂ V . For
the current density J , the condition ∇·J = 0 suggests the
introduction of a vector potential T̃ such that J = ∇×T̃ .
Then in Vc, the difference between the vector potential T̃
and the magnetic field H can be written as the gradient of
a scalar function Ω̃, i.e., H = T̃−∇ Ω̃. A similar argument
holds for the insulating region, where we assume knowing
a vector potential Ts such that Js = ∇×Ts.

We define a variational formulation based on the de-
composition of H into T̃ − ∇ Ω̃ in Vc and Ts − ∇ Ω̃ in
V \ Vc. Choosing T̃ ∈ H0(curl; Vc) and Ω̃ ∈ H1

0 (V ), T̃

and Ω̃ satisfy at each time step the interface conditions,
i.e., Ω̃ is continuous at ∂Vc and [T ]c×nc = 0. Note that,
if (T̃ , Ω̃) is a solution of the variational problem, then
(T̃ + ∇φ, Ω̃ + φ), φ ∈ H1

0 (Vc), is a solution as well. In or-
der to get uniqueness, we choose φ such that Ω = Ω̃+φ is
harmonic on Vc. Using a stable implicit Euler scheme
with time step δt, the variational problem reads: find
(T, Ω) ∈ H0(curl; Vc)×H1

0 (V ) such that

a(Ω, v) + bc(T, v) =
∫

V \Vc
f ∇ v, ∀ v ∈ H1

0 (V ),
ac(T, W ) + bc(W, Ω) =

∫
Vc

fc W, ∀W ∈ H0(curl; Vc).
(3)

Denoting with H : H
1
2 (∂Vc) → H1(Vc) the harmonic ex-

tension operator, the continuous bilinear forms in (3) are

bc(W, v) = −
∫

Vc
W ∇H v|∂Vc

,

a(Ω, v) =
∫

V
β∇Ω∇ v ,

ac(T, W ) =
∫

Vc
(α∇×T ∇×W + T W ) ,

for all Ω, v ∈ H1
0 (V ) and T, W ∈ H0(curl, Vc). The coef-

ficients α, β > 0 are assumed to be piecewise constant and
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depend on the material parameters σ, µ as well as on the
time step (e.g., α = δt

µ σ in Vc). Note that the unknowns
T and Ω denote the approximations at the current time
step, fc depends on the approximations of T and Ω at the
previous time step, and f denotes the scaled source term
depending on Ts. Problem (3) has a unique solution.

The domain V is associated with a quasi-uniform sim-
plicial triangulation TH on which we use standard con-
forming finite elements of lowest order. The associated
discrete space having zero boundary conditions on ∂V is
called S0;H(V ). For the discretization of the vector field
T , we use edge elements, see [3], on a quasi-uniform simpli-
cial triangulation Th of Vc. The associated discrete space
is Xh(Vc) and we set X0;h(Vc) = Xh(Vc) ∩ H0(curl; Vc).
Finally, we denote by Sh(Vc) the space of standard con-
forming finite elements of lowest order associated with Th

on Vc, and its trace space on ∂Vc is called Wh(∂Vc).
In order to formulate the discrete version of prob-

lem (3), we have to replace the harmonic extension op-
erator H in the definition of bc(·, ·) by a discrete one
Hh : Wh(∂Vc) → Sh(Vc). The restriction of v ∈ S0;H(V )
on ∂Vc is, in general, not an element in Wh(∂Vc). To
overcome this difficulty, we introduce a projection opera-
tor Πh : S0;H(V ) → Wh(∂Vc) on the boundary ∂Vc which
is well known in the mortar finite element context [2], [6].
In terms of Hh and Πh, the discrete variational problem
reads: find (Th, ΩH) ∈ X0;h(Vc)×S0;H(V ) such that

a(ΩH , v) + bh(Th, v)=
∫

V \Vc
f ∇ v, ∀ v ∈ S0;H(V ) ,

ac(Th, W ) + bh(W, ΩH)=
∫

Vc
fc W, ∀W ∈ X0;h(Vc) ,

(4)
where bh(W, v) = −

∫
Vc

W∇HhΠhv, for v ∈ S0;H(V ) and
W ∈ X0;h(Vc). This approach is characterized by an op-
timal error estimate and problem (4) can be solved effi-
ciently by means of a Gauß-Seidel iterative scheme [6].

For the mechanical part, let � be the distance between
the two equilibrium positions of Vc which correspond to
take or not to take into account the gravity force, respec-
tively. We then denote by m the mass of Vc and by y
the vertical position of the center of Vc at time t, with
the initial conditions y(0), ẏ(0). Then at any given time,
there are four forces acting on m: the gravity force −mg
pulling downward, the spring force k(�− y), the damping
force −bẏ and the external magnetic force (Fm)y . Ne-
glecting any movement in the x-direction, the Newton’s
law of motion for a point mass (the center of Vc) reads:

mÿ = −mg + k(� − y) − bẏ + (
∫

Vc

(∇×H) × µ H)y . (5)

If we write (5) at the equilibrium position, i.e. y = 0 and
Fm = 0, we get mg = k�. Then, (5) simplifies into

mÿ + bẏ + ky = (
∫

Vc

(∇×H) × µ H)y . (6)

To discretize (6), we apply a second order explicit finite
difference scheme of time step δt.

Results and Discussion

We present some numerical results for problem (4) ex-
plicitely coupled with the discrete form of (6). Figure 1
shows the problem configuration (for a given y �= 0) and
the computational mesh, quadrilateral in V and triangu-
lar in Vc. The mechanical parameters are chosen to give

a damped oscillating system (i.e., b2 − 4km < 0). Here,
m = 0.2, b = 0.05, k = 5, δt = 0.06 s; with y(0) = 0.2 and
ẏ(0) = 0, we perform 100 time iterations.
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Fig. 1. (Left) Domain geometry and dimensions in cm. For the tests,
V = (−0.1m, 0.1m)2, σ ≥ 0, µ0 = 4π10−7H/m, µm = 10−3H/m,
Ts = 3·103x�ey, t > 0. (Right) Nonmatching grids for Vc and V .
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Fig. 2. Vertical position y of Vc for different values of σ.

Looking at Figure 2, we observe that, for σ = 104 S/m,
the resulting motion almost coincides with that described
by the homogeneous form of (6). In this case, the mag-
netic force related to the induced currents in Vc is rather
weak and it takes more than 6 s for the center of Vc to
reach the equilibrium position. As soon as σ ≥ 105 S/m,
the contrasting effect of the eddy currents to the mo-
tion is more visible: the amplitude of the oscillation de-
creases and the damping time interval as well as the os-
cillation period changes. For σ ≥ 106 S/m some nonlin-
ear effects occur: a resonance phenomenon appears and
Vc goes through a transient equilibrium position different
from y = 0.
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Abstract  A novel technique for the numerical analysis of fluctuations
of frequency characteristics of semiconductor devices induced by
random doping fluctuations is presented. The basic idea of the technique
is to linearize the transport equations with respect to the fluctuating
quantities (state variables and doping). It can be shown that this
technique yields information on the sensitivity of variances of frequency
characteristics to different locations of doping fluctuations. This
information can be directly used for the design of dopant fluctuation-
resistant structures of semiconductor devices. The numerical
implementation of this technique is discussed and numerous computa-
tional results are presented.

INTRODUCTION

The prevalent trends in the design of semiconductor
devices are to increase the operational frequency and to 
reduce the power consumption of the devices. This can be
achieved by deeply scaling down the semiconductor devices.
It is well-known that such small devices will be very
susceptible to random dopant fluctuations that are inevitably
present due to the random nature of ion implantation and
diffusion process. For this reason, an accurate statistical 
analysis of random dopant-induced effects is very important
for the further progress in semiconductor technology, in 
general, and in mixed signal electronics, in particular.

One of the most important issues in the analysis of 
semiconductor devices is the frequency characterization of 
the devices. From a computational point of view, this is
equivalent to (1) solving the transport equations that are
Poisson and current continuity equations and (2) solving the
linearized transport equations and find the frequency
characteristics of the device (small-signal parameters, cut-off
frequency, etc.). The statistical analysis of semiconductor
devices usually requires to accumulate statistics for a large
number of devices with different doping realizations and then
to compute the variances of different quantities of interest.
Most of the existing approaches to the analysis of random
dopant-induced fluctuations [1,2] are related to the
computation of standard deviation of threshold voltage of
MOSFET devices and no effort have been made to study
random dopant-induced fluctuations of frequency
characteristics. In this paper, we develop an efficient
technique to the computation of fluctuations of admittance
matrix elements (y-parameters) of semiconductor devices.
This technique is based on the linearization of transport
equations with respect to the fluctuating quantities and it
completely avoids computations for numerous doping
realizations.

TECHNICAL DISCUSSION

The basic idea of the method as well as some numerical
results for the variances of admittance matrix elements are 
presented bellow. The admittance matrix elements are very 
important for the small-signal ac device characterization and
they can be used for direct calculations of other device
parameters such as voltage gain, current gain, cutoff
frequency, as well as to estimate the stability and noise
behavior of semiconductor devices. The usual approach to the
calculation of frequency characteristics is to linearize the
spatially discretized transport equations [3] and write them in
the form:

, , , ,... 0d V V
dt

J X F X D ,   (1)

where F is a nonlinear vector function of unknown “state”
vector X , doping vector D , and terminal
potentialsV V , while J is a vector function which
depends on

, ,...
X  only. In the drift-diffusion model, the state 

vector X  consists of three vectors , , and , whose
components are the mesh-point values of electric potential,
electron and hole densities, respectively.

n p

In order to find the admittance matrix elements, a 
sinusoidal voltage of infinitesimal amplitude v  is applied to 

the -terminal, 0
j tV V v e , while all other terminals

are kept at constant dc potentials. This will induce an ac
perturbation in the state variable 0

j teX X x . The 
governing equations for x  can be found by linearizing

equation (1) around the dc bias values 0X  and V 0 :
ˆ ˆ 0Vj vX XJ F x F .    (2)

The doping fluctuates from point to point and from one 
device to another and can be treated as a random field [1]: 

0D D D , 0D ,    (3)

where D denotes the expected value of D , and 0D  is the

average value of the doping. This will induce fluctuations 0X
and x  in the dc and ac components of the state variable,
respectively. It can be shown (details will be provided in the
full paper) that these fluctuations satisfy the following linear
system of equations:
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0

0

ˆ ˆ ,
ˆ ˆ 0,

X DF X = -F D

Ax BX
     (4)

where the following matrix notations have been introduced:
ˆ ˆ ˆj X XA J F ,       (5)

3

1

ˆ ˆ ˆ
i i

N

,X ,X ,i
i

j xX XB J F .    (6)

Here:
ˆˆ

i,X
iX

X
X

JJ ,
ˆˆ

i,X
iX

X
X

FF , while iX  and ,ix  denote

the i-th component of vectors X  and x , respectively. Both

matrices Â  and  are computed at dc bias point
.

B̂
0,V0 0X ,D

The fluctuations of admittance matrix elements are caused
by x , and it can be shown that, in the first order
approximation, they can be evaluated as a linear combination
of the fluctuations of doping at different mesh-points:

,      (7)
1

N
i

i
i

y D

where i  are some “superposition” coefficients and N is the

total number of mesh points. Assuming that  are 
independent Poisson random variables, the variance of

iD
y

is:
2 22 2 0

0
1 1 1

i

N N N
i i ii

D iy
i i ii

D S N
V

, (8)

where  is the expected number of doping ions in volume
 and 

0iN
SiV i  are the “sensitivity” coefficients which are 

defined as:
2i

i

i

S
V

.      (9)

These coefficients show how sensitive the standard deviation
of admittance matrix elements is to different locations of
doping fluctuations. Therefore, they are very instrumental in
the design of dopant fluctuation-resistant structures. The
problem of the computation of variances of y-parameters is
reduced to the computation of superposition coefficients. In 
order to find all N superposition coefficients, one has to solve
N times the linear systems (4). It turns out that there exists a 
mathematical trick that substantially simplifies these
computations and reduces them to the solution of only one
linear system of equations equivalent to (4). This trick will be
fully described in the paper.

Numerical codes have been developed and extensively
used to study the dependence of variances of admittance
matrix elements of MOSFET devices on frequency, doping
concentration, channel width and oxide thickness. Figure 1
presents the computed values of real and imaginary parts of 

. In the above simulations, the oxide thickness21y oxt 3 nm,
the channel width W  nm, the channel length50 L 50
nm, the operating frequency 10 GHz, while the average

doping concentration is  cm

f

18
0 10D -3. Numerous other

numerical results will be presented in the full paper.

2G f

x

102

Figure 2 shows the sensitivity coefficients of the gate
capacitance ImGG GC y  as a function of the spatial
locations of doping fluctuations. The channel extends
between 100nm and 150nm, while the drain and the source
regions correspond to 150nm and x 100nm,
respectively. One can see that the main contribution to the
fluctuation of the gate capacitance is given by fluctuations of
the doping at the drain-channel and source-channel junctions,
and in the direct proximity to the oxide-semiconductor
interface. As it will be shown in the paper, this case is 
different from the cases of fluctuations of other admittance
matrix elements, where also exists a significant contribution
from fluctuations of the doping localized deeper inside the
device.
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Abstract     It is possible that high temperature superconducting
(HTS) bulk l inear synchronous motor (LSM) is  propel led
contactlessly with no guidance and levitation control. Its design
and dynamic simulation are based on very complecated analysis
of HTS bulk. This paper proposes HTS bulk LSM applied to
ropeless linear elevator (RLE) analyzed numerically taking into
account E-J characteristic in finite element method (FEM). The
LSM can be propelled following command motion pattern with
PID control and  produce stable guidance force without its con-
trol.

INTRODUCTION

HTS bulk can be lavitated stably on a track which consist
of permanent magnets of the same polarity by maintaining mag-
netic flux in HTS bulk. We have proposed a new LSM theory
which is based on an idea of this characteristic as synchroniz-
ing force in using current-carrying-armature-winding instead of
permanent magnets [1, 2]. By using this method, HTS bulk LSM
can be propelled without guidance and levitation control.

This paper proposes vertical type HTS bulk LSM which is
applied to ropeless linear synchronous motor for elevator. HTS
RLE is analyzed numerically taking into account E-J character-
istic in FEM. The LSM propulsion motion is simulated follow-
ing command motion pattern with PID feedback control, together
with combined guidance simulation without its control.

HTS LSM MODEL

Figure 1 shows the model of HTS LSM applied to RLE.
The armature guideway of RLE in our labratory is used as that
of this simulation model. The x-axis and z-axis denote a direc-
tion of propulsion and guidance. The x-directed cage position
is x

2
, and the z-directed cage position is z

2
. HTS bulk is cooled

at x
2
=0  and z

2
=0, where the cage is located in the center of

armatures for starting.
The cage has ten pieces of HTS bulk on each side of the

armature. The shape of bulk is a rectangular parallelepiped. The
size is 40 mm in length and 10 mm in thickness with 40 mm in
width in the y-direction. These bulks are arranged 2 poles in the
x-direction. At z

2
 = 0, the mechanical clearance between cage

Armature Guideway

HTS Bulk

Cage

x

zy

400mm

Po
le

 p
itc

h
τ=

60
m

m

Fig. 1  Model of HTS LSM appied to RLE

SIMULATION METHOD

Simulation is based on 2D FEM calculation. According to
Maxwell equations, electromagnetic phenomena in HTS bulk are
described by using the magnetic vector potential A as:

where σsc is electrical conductivity in HTS bulk and φ is electric
potential. It is simulated by using E-J characteristic as follow[3]:

where Jc is the critical current density 5.0× 107 A/m2,  Ec

=1.0× 10-4 V/m and n=30 [3]. Ohm’s law is supposed in HTS
bulk and by using Eq. (3) σsc is expressed as:

σsc in Eq. (4) is applied to Eq. (1), (2), and magnetic force is
calculated from solving numerically the nonlinear eddy-current
FEM problem.

Making use of symmetry of LSM shown in Fig. 1, FEM
model is considered on one side of the cage. HTS bulk is cooled
in magnetic field produced by DC armature current I1=40 A. At

( ) 0sc

A

t
σ φ∂∇ ⋅ + ∇ =

∂
 (2)

( )n
c

c

J
E E

J
= (3)

1

( )c n
sc

c

J E

E E
σ = (4)

1
( ) ( )sc

A
A

t
σ φ

µ
∂∇× ∇× = − +∇
∂

(1)

and armature is 5 mm. The weight of the cage is assumed 9 kg.
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time t = 0 s, the cage starts at I
1
=40 A.

Combined propulsion and guidance motion to go up along
the armature guideway of HTS LSM is simulated by adapting
to close loop.  In the close loop, equation expressing between
LSM mechanical load angle x

0
  and F

x
 is needed to obtain x

0

from demanded magnetic force F
*

x
.

The formulated equation is given by

In order to follow the command propulsion patterns, the
control law for x

0
 based on PID regulator is given by

where x*
0
 and x

0
 are the demand and actual mechanical load

angle. x
20

, v
20

, a
20

 and x
2
, v

2
, a

2
 represent the command and ac-

tual position, speed and acceleration of the cage, respectively.
K

P
, K

I
 and K

D
 are feedback gains.

SIMULATION RESULT

The command motion pattern is as follows. Propulsion and
guidance simulation of HTS LSM with using close loop control
is carried out. At 0-6 s, the cage went up with a variety velocity
up to 0.2 m/s. During 4 s from 6 to 10 s, the cage  is stopped at
x

2
=0.8m. After 10 s, the cage went down. At 3 s, z-directed dis-

turbance force 10 N is given the cage.
Figure 2 (a), (c) show x-directed and z-directed position.

The x-directed position follows the command pattern very well.
Though z-directed disturbance force is given at 3 s, changes
are not seen clearly. The z-directed position oscillates. The
ocillation is stable and decreases graduately for 13 s, but the
ocillation could not be converged in the short operating times.

Figure 2 (b), (d) show x
0
-dependence of x-directed force

and z
2
-dependence of z-directed force. F

x
 for 12-16 s is weaker

than one for 0-4 s. z-directed position is proportional to z
2
.

CONCLUSION

This paper presents combined propulsion and guidance
simulation of HTS bulk LSM applied to RLE. By using the for-
mulated equation of thrust force, a precise position control can
be carried out. A stable guidance ocillateion is decayed  gradu-
ally but will be able to be  converged quiqly with feedback con-
trol.
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(b) x0/τ-dependence of thrust force F
x

(c) z-directed vehicle position

(d) z2-dependence of normal force F
z

Fig. 2 Simulation results
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Abstract ? In this article we study the design parameters and
especially the influence of leakage electric fields on the performance of a 
piezoelectric inchworm actuator.   We consider the deformation of the 
central piezoelectric element caused by the leakage fields produced by 
exciting the end electrodes.   A range of possibilities for minimizing this 
deformation is proposed.  Particularly we study the effect of the
thickness of insulating disks which separate the piezoelectric elements.

INTRODUCTION

Piezoelectric actuaotrs are currently being considered for 
medical application due to their small size, high force
density production, precision and low-speed controllability.
An inchworm device is now being considered which has 
three piezoelectric elements adjacent to one another.  These 
three elements are excited independently (one at a time) and 
successively to achieve the desired motion.  We would like
these to act independently.  If there is a deformation of one of 
the active elements due to the excitation of the adjacent
element, we must correct the excitation to compensate for this 
or build into the design isolation from the electric fields.

DESCRIPTION OF  THE DEVICE

The device considered is a piezoelectric inchworm
actuator. It is made of 6 elements illustrated in Figure 1. The 
piezoelectric rings (1 and 3) contract and expand around a 
core (5) by application of a voltage on electrodes attached to 
these elements. The tube (2) is also piezoelectric and expands 
and contracts along the core. The disks (4) isolate elements 1 
and 3 from element 2.

1 2 3

4

5 1 2 3

4

5

Fig. 1. The Inchworm Actuator

The sequence of excitation of the actuator is composed of 
six steps.  First element 1 contracts squeezing the central rod
while element 3 is in the expanded state.  Then we expand 
element 2 in the longitudinal direction. The third step is the 
contraction of element 3, squeezing the rod.  Element 1 is 
then released and then element 2 contracts. We then expand 
element 3 and have gone through a full cycle. At each cycle 
the core moves along the rod a distance equal to the
displacement of element 2.

MODELING AND ACCOUNTING FOR FRINGING FLUX

The geometry of the actuator and the nature of the sources 
allows us to model the device axisymmetrically.   Figure 2 
shows the electric field vectors in the piezoelectric elements
1 and 2 when only element 1 is excited. There is no

insulating disk in this case. The
figure illustrates that there is
electric flux penetrating element 
2, which will cause an
undesirable deformation.  The
leakage flux penetrating element 
2 is due to its proximity to
element 1.

EFFECT OF THE LEAKAGE FLUX ON THE 
ACTUATOR

The penetration of the leakage 
flux on the central element will 
result in the deformation of this 
element and could affect the
performance of the actuator.

.

Fig. 2 : Electric Field Vectors with Element 1 Excited.
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STUDY OF DIFFERENT SOLUTIONS

Figure 3 : Equipotential Lines (elements 1 and 2) With No Insulating 
Disk

The insulating disks will not prevent leakage or fringing 
flux but will reduce the coupling between elements 1 and 3 
and element 2. We see in Fig. 3 and 4 the equipotential lines
with no insulating disk and with an insulating disk.  Clearly 
the coupling is reduced because of the insulation.

Fig. 4 :  Equipotential Lines  (elements 1 and 2) With An Insulating Disk.

Fig. 5:  Undeformed Device

Fig 6 : Deformed Device

The analysis of the device in the deformed and undeformed
state is shown in Figs. 5-6. The analysis was done using a 
coupled electric field and deformable material formulation. In 
the case shown we have included an insulating disk  and the 
elements are therefore isolated.

CONCLUSIONS

The applications anticipated for this actuator includes the 
precision positioning.  The modeling of the inchworm
actuator using Flux2D and Atila allows us to find a geometry 
in which the excitaton of the different electrodes do not have 
an appreciable effect on the adjacent elements.   We have 
studied the use of an insulating disc to reduce the coupling 
effect.  It is clear that numerical methods are necessary to 
study these effects and that these effects must be minimized.

Solutions to this problem have been proposed and studies 
have been done to quantify the coupling effects.  The
advantages and disadvanteges have been studied and will be 
presented in the extended paper. 
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Abstract—A novel finite volume method is proposed to investigate the 
EEG forward problem using the superposition principle. The current 
continuity is satisfied and the calculation accuracy is enhanced. The 
realistic head model is simulated. Calculation results indicate that FVM 
is a powerful numerical tool for simulating the realistic head model 
with anisotropic conductivity. 

INTRODUCTION

The finite volume method (FVM) possesses some 
advantages in the calculation of curved anisotropic problems. 
The electroencephalogram (EEG) is a current field problem 
generated by point sources or dipole sources. The EEG 
problem with anisotropic conducting media can be solved 
conveniently by FVM. The principle of superposition is used 
in FVM to satisfy the current continuity equation. 

METHOD

Suppose a dipole source is positioned in a conducting 
region, the potential distribution in the region can be 
expressed by the current continuity equation [1], i.e., 

����
������

SS

SdSdJI
���

)( �� ,      �1�

where S is the surface of each control volume,�is the 
conductivity of the media, I is the total current through the 
closed surfaces. The boundary condition specifies that no 
current flows into the air, i.e., 0/ �n����  (n is the normal 

of the boundary). 
To describe the discretization of the field domain, let us 

take a sphere for instance as shown in Fig. 1. The sphere is 
divided into homocentric spheres and the surface of the 
sphere is divided into a large number of triangles. 
Connecting all the vertices of the triangles to the spherical 
center, a large number of curved triangular prisms are 
constructed. The potentials � i at the vertices or mesh nodes 

are taken as the unknown to be solved. To obtain the FVM 
equation system, a closed surface around each node is 

defined as the integral surface in (1).  
To simplify the description, let us first consider the 

two-dimensional case as shown in Fig. 2. Let Mio be the 
node under consideration, OM is the barycentre of the 
triangle Mio Mi1 Mi2. Mio1 and Mio2 are the middle points of 
the edges Mio Mi1, Mio Mi2 of triangles. If all the barycentres 
of triangles around Mio are connected with the middle points 
of their edges respectively, a closed region is formed, as 
shown hatched in Fig. 2. Now generalize the 
two-dimensional case to the three-dimension case, as in Fig. 
3. Triangle Mio Mi1 Mi2 is the interface of two adjacent 
triangular prisms. Other five triangles surrounding point Mio

as shown in Fig. 2 can be defined in a similar way as the 
interfaces of other triangular prisms. We then displace the 
hatched region of Fig. 2 to the central section of the upper 
and lower triangular prisms respectively, which compose the 

Fig. 2.  Closed surface in
the two dimensional case 

OM

Mi1 

Mi2 

Mi01 

Mi0 Mi02 

Fig. 3. Definition of the polygonal 
prism around node Mio.

Mi2

Mi1 

Mi0

(a)        (b) 

Fig. 1.  Mesh generation of a spherical model. (a) triangles on

the spherical surface; (b) the triangular prism in the sphere. 
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top and the bottom faces of the closed surface surrounding 
point Mio. Other parts of the closed surfaces are the 
rectangular surfaces as shown in Fig. 3. 

Suppose the number of the surface segments of the 
polygonal prism is N. By taking the surface of the prism as 
the integral surface in (1), we can get an equation as: 

������
��

�������

N

i
S

in

N

i
S

i
i

i
i

dSSdI
11

����

�

,     (2) 

where ni is the normal of the surface segment i.
 Equation (2) involves the surface integration of the 

normal potential gradient on the closed surface. However, 
they should be expressed by potentials on each node. The 
calculation of the current flux is developed based on the 
principle of superposition, as shown in Fig. 4, where “1” 
represents that the potential of the point is considered in the 
calculation of the current flux and “0” represents that the 
potential of the point is ignored in the calculation of the 
current flux. The current flux of the closed surface is equal 
to the summation of the current flux generated by each 
vertex of triangles. Let us take point A for instance, as shown 
in Fig. 5. If the potential of point A is considered, but the 
potential of point B and C are 0, it is equivalent that a 
parallel plane field is set up in the region of the triangle, as 
shown in Fig. 5(b). Suppose the media in the triangle is 
homogeneous, �  is a constant. Since the field intensity is 
homogeneous in the parallel plane field, so the current flux 
is homogeneous. To calculate the flux of OP is equivalent to 
calculate the flux of OP1, which is the projection of OP to 
BC. Therefore, the current density on each surface is 
obtained by superimposing current fluxes of these three parts 
in Fig. 4. Consequently, the current flux is obtained. Because 
the calculation of the current flux of the surface inside is the 
same as the calculation of the current flux of the surface 
outside, it is obvious that the current flux satisfies the current 
continuity equation. 

Fig. 4. Superimposing of the current flux. 

NUMERCIAL EXAMPLES 

The approaches above are extended to the realistic head 
model. The mesh generation on the head surface is shown in 
Fig. 6(a). The head model is divided into four layers, 
including the cortex, cerebrospinal fluid (CSF), skull and 
scalp. The conductivity of the cortex, CSF and scalp are 
isotropic. They were adapted from Zhou and Oosterom [2]. 
The conductivities are 0.33 ( m)-1, 1.0 ( m)-1, 0.33 ( m)-1 , 
respectively. While the conductivity of the skull is 
anisotropic, the normal conductivity is 0.0042 ( m)-1, and 
the tangential conductivity is 0.042 ( m)-1. Totally 71617 
mesh nodes were employed. The potential distribution on the 
outer surface is shown in Fig. 6, in which (b) is the one 
dipole case and (c) is the five dipoles case. In the figures the 
bright regions represent high potential. 

CONCLUSION

In this paper, a novel FVM is developed to solve EEG 
forward problems. Compared with the conventional 
structured meshes of FVM, the geometrical singularity is 
overcome using triangular prism meshes. The superposition 
principle satisfies the current continuity equation, which 
increases the calculation accuracy. As described above, FVM 
is a powerful numerical tool for simulating the realistic head 
model with the anisotropic conductivity. 
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Fig. 5. Calculation of the current flux based on the superimposing

principle. 

(a)                (b)               (c) 
Fig. 6. Realistic head model. (a) mesh generation on the surface of

the realistic head model; (b) potential distribution on the scalp; (c)

potential distribution on the cortex. 
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Abstract�A meshless method based on the collocation with Radial 
Basis Functions (RBF) and wavelets is proposed. It is shown that the 
proposed method makes full advantages of both RBFs and Wavelets. 
The bridging scales are employed to preserve the mathematical 
properties of the entire bases in terms of consistency and linear 
independence. A numerical example used to validate the proposed 
method is reported. 

MESHLESS COLLOCATION METHOD BASED ON RBFS AND WAVELETS 

The study of meshless methods has now become a topical 
area for computational electromagnetics since meshless 
methods can eliminate the tedious and difficult mesh 
generating process in traditional numerical methods when 
solving boundary value problems. However, the inherent 
inefficiency in imposing boundary and interface conditions of 
meshless methods often undermine the usefulness of these 
methods in many engineering applications. Consequently, 
some meshless methods based on the collocation with RBFs 
are proposed [1]. Moreover, it should be noted that by using 
some compactly supported RBFs, one might avoid the need 
for the full coefficient matrix in traditional globally supported 
RBFs. However such approach will result in significant errors 
when one interpolates the derivatives on the boundary [1]. To 
address the problem and, more specifically, to take full 
advantages of both RBFs and wavelets, a meshless 
collocation method using RBF interpolation to enforce the 
boundary conditions is proposed. To keep the required 
mathematical properties, such as the consistency and linear 
independence, of the shape functions of the proposed method, 
the bridge scales are generalized and used in the proposed 
algorithm. Computer simulations are conducted and the 
numerical results are reported to validate and demonstrate the 
advantages of the proposed method. 

Wavelet Approximations 

For any function ��),( yxu , its approximation using 
wavelets can be given as 

��

ji

J
jiji yxcyxu

,
,, ),(),( �                              (1) 

where J is the resolution or scale parameter, 
)()(),(, yxyx J

j
J

i
J

ji ��� � , )2(2)( 2 izz JJJ
i �� ��  is the one 

dimensional scale function of the wavelets, and it can be 
determined from the following two scale relation 
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In the proposed algorithm, the Daubechies’ scale function 
is used, hence L is an even integer. 

Interpolation Using Radial Basis Function 

Since the RBF interpolation is only used for enforcing 
boundary conditions in the proposed method, the globally 
supported RBFs will be used in this paper because of their 
high interpolation accuracies. The interpolation of a function 

RDyxu �:),(  on the basis of its values iu  at some 
scattered data points ),,2,1(),( NiDyxX iii ����  in terms 
of some radial basis function H  is 
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1
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where, ||�|| is the Euclidean norm. 
The radial basic function used in this paper is 

04.02 )1.0()( �� rrh ,                           (4) 
which has been reported as the optimal RBFs [2]. 

In the numerical implementation, a transformation is used 
to consider the difference in the dimensions of the coordinate 
directions, i.e.,  

22 )()(||||
yx k

y
k
xXr ���                         (5) 

Combined Interpolation of RBFs and Wavelets 

For the proposed algorithm to work in a more general 
form, the entire domain of the problem is divided into three 
sub-regions (Fig. 1): R� is where only the RBF interpolation 
is present, w�  is where only the wavelets contribute to the 

approximation of the solution variable, w
R�  is where both 

RBFs and wavelets have influences. In region R�  or w� , the 
interpolation of the solution variable is the standard form of 
(3) or (1), respectively. To develop a general interpolation 
formula in region w

R�  for the solution variable u(x,y) using 
both RBFs and wavelets, one begins with 

)()()( ,,
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XcXXHdXu J
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j
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To ensure the required mathematical properties of the 
entire bases such as the consistency and the linear 
independence are retained, the bridging scale concept is used 
to modify the wavelets [3]. Thus, in region w

R� , (6) becomes: 
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where, )(, XJ
ji�  is the modified wavelet based on the bridging 
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scales, and is defined as 

R�

w�

w
R�

Fig. 1. The Schematic diagram of the division of the solution domain  
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Discrete Mathematical Model 

Without lost of generality, one considers the following 2-
D Poisson’s equation on the domain � bounded by boundary 
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Based on the collocation method, and substituting (7) into 
(9)-(11), one obtains the discrete equations as 
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NUMERICAL APPLICATION

To validate and to demonstrate the advantages of the 
proposed method, it is used to analyze the magnetic fields of 
a typical U-magnet as shown in Fig.2 (a). Due to the 
geometrical symmetry, only half of the physical region, i.e., 
the region enclosed by ABCD in Fig. 2 (a) needs to be studied. 
The boundary value problem can be formulated as 
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2

                              (13) 

In the numerical implementation, the solution domain is 
divided into two different sub-regions with i) very thin layers 
near the essential boundaries where both RBFs and wavelets 
have common influences, and ii) the residual of the solution 
domain where only wavelets contribute to the interpolation 
(Fig. 2 (b)). The node arrangement of the proposed method is 
also shown in Fig. 2. (b). The computed flux density 

distribution by using the proposed method is shown in Fig. 3, 
which is almost identical to those obtained by using a FE 
method as reported in [4]. In other words, these numerical 
results positively confirm the feasibility of using the proposed 
numerical method in finding the solutions of practical field 
problems. It should also be pointed out that even when 
compared to other meshless methods, the proposed one needs 
to discretize some very thin layers near the boundaries only, 
resulting in significant reductions in the number of total nodes, 
thereby offering high flexibility in dealing with 3-D problems 
in which traditional methods such as the FEM are awkward 
because of the tedious meshing requirements. 

A

B C

D

x

y

O

(a) (b) 

Fig. 2. (a) The U-Magnet and (b) The node arrangement of the proposed  
                                                method 

Fig. 3.  The distribution of the computed magnetic flux density 
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Abstract– Electromagnetic scattering from 
arbitrarily shaped inhomogeneous dielectric bodies has 
been an interesting topic due to its importance to problems 
that include propagation through inhomogeneties. This 
type of problems can be formulated in the form of a 
volume integral equation and solved by the method of 
moments (MoM). However, solving large scale 
electromagnetic problems by MoM suffers from � �

2NO
numerical complexity of memory requirement and CPU 
time both to assemble and solve the system matrix, where 
N  is the number of basis functions. This paper presents a 
novel 2-level dual rank SVD algorithm that efficiently 
compresses the system matrix to reduce the memory 
requirement and CPU time for both matrix assembly and 
solution to � �

23NO .

I. VOLUME INTEGRAL EQUATION 
FORMULATION 

Volume integral equation (VIE) is obtained through 
mixed potential integral equation.  Let V denote the 
volume of a scatterer characterized by its relative 
permittivity � �r�  and relative permeability � �r� , which 
are continuous inside V. Applying the volume equivalence 
principle and the continuity equation, the scatterer can be 
replaced with equivalent electric current and charge 
densities [1]:    

� � � � � �rDrjrJ ���                                                    (1a) 
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the total field into incident and scattered fields we have  
� � � � � �rErErE si

��                                                  (2) 
where  
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������                                              (3) 
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Discretization of the volume by tetrahedral elements 
and interpolation of � �rD  by the first order divergence 
conforming vector basis functions followed by testing of 
Equation (2) with the basis function chosen leads to a 
system of linear equations:  

m
i

mmm f,Ef,f,Ajf,D �������

N,...,2,1m �                                                                   (5) 

where 
� �

���������

S V
mmm dvfdsn̂ff,  and S  is 

the surface that bounds the volume V [2]. 

II. DUAL RANK SVD ALGORITHM 

The dual rank SVD algorithm is based on the rank 
deficiency feature of the integral equation for well-
separated groups of basis functions [3]. The algorithm 
factorizes the local matrix ij

nmZ
�

 due to the groups i and j 

into ij
rmQ

�

 and ij
nrR

�

 matrices without a priori knowledge 

of ,Zij
nm�

 where m and n are the number of receiving and 
transmitting basis functions, respectively, and r is the rank 
of interaction: 

� �
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            (6) 

Here, pz  is the column vector due to the pth transmitter 

and q�  is the row vector due to the qth receiver. 
  Assuming the average number of basis functions in 

each group is m, the number of groups is mNNg � . If 
average rank r is also assumed to be constant for all non-
self group interactions, the numerical complexity for the 
memory requirement and matrix-vector multiplication can 
be estimated by 
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2

� � rN2mrN2Nmrm2NNmNC 2
g

2
g

2
g ������  (7) 

C can be optimized by choosing m  proportional to N .
With this choice of m  the numerical complexity is 
� �

23NO . The numerical complexity of the matrix 

assembly may also shown to be � �
23NO , albeit with a 

large scale factor. 

V. NUMERICAL RESULTS 

A numerical example is presented in this section to 
demonstrate both the accuracy and efficiency of the dual 
rank SVD algorithm for solving the volume integral 
equation of electromagnetic scattering. As shown in Figure 
1, far field patterns calculated using the dual rank SVD 
algorithm is compared with the direct MoM 
implementation for a dielectric sphere. The sphere has 
radius of o75.0 �  and the dielectric constant is 0.4r �� .

The incident wave is 1.125 GHz at o180�� . The sphere 
is discretized into 4901 tetrahedron elements with 10162 
unknowns. The generalized minimum residual (GMRES) 
is used to solve the matrix equation iteratively. In Figure 2, 
CPU time and memory requirements for generating the 
matrices of homogeneous dielectric spheres of radius 

o25.1,1,75.0,5.0 �  are plotted.  

VI. CONCLUSION

The dual rank SVD algorithm has been applied for 
solving volume integral equation. Due to the reduction of 
the computational complexity the method presented in this 
paper can be applied to solve electromagnetic scattering 
problems with electrically larger dielectrics.   
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Abstract—The meshless method theory and its’ application to the 

electrostatic problems are discussed. The selection of the weighted 

functions is the key of this method. Therefore, the computing speeds 

and precisions are compared by the different weighted functions. With 

help of the 2D electrostatic field models, according to the principles of 

weighted functions’ selection, the parameters’ range of each weighted 

functions and the adaptive weighted function for solution of 

electrostatic field are found. 

INTRODUCTION 

Meshless methods, which originated about twenty years 
ago and is developed speedily in recent ten years, was used 
firstly to analyze electromagnetic field on 1998. As the 
method is based on moving least squares (MLS), it can 
provide the any order continuity shape functions. Weighted 
function, the core of MLS, determines the continuity of the 
field function, precision of results and speed of computing. 
Nowadays, We have found many kinds of weighted 
functions, which can be used in MLS. Unfortunately, there 
are not principles on weighted function selection  

In this paper, the meshless method in electrostatic field 
was discussed based on the experience of mechanics 
research. We compare the results of two-dimension 
electrostatic field under different weighted functions, then, 
draw the conclusion of some regulations of weighted 
functions’ selection in electromagnetic field analyzing. 

FORMULATION

The essential formulations of meshless method and MLS 
can be obtained easily [1]. To make the theory clearer, we 
consider two-dimensional electrostatic problems, which are 
governed by the equation 
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The weighted functions have to satisfy the following 
conditions: 

a) Nonnegative; 
b) Continuity and derivativeness; 
c) Monotonically decreasing, and the value equal to 

zeros outside the sub-domains. 
The weighted functions are the commonly used in 

engineering as follow: 
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Among the three rules, the vital condition is the second 
one (continuity and derivativeness). To obtain results as 
exact as possible, weighted functions must satisfy continuity 
and derivativeness, the parameters of weighted functions 
should be chosen properly. Two of exponential functions and 
conical function are not of strict continuity and 
derivativeness, but the results worked out from them in 
proper parameters are acceptable.  

CALCULATING

Some electrostatic field models are given and computed 
by meshless method with above weighted functions, and the 
results are compared. As in the general case of meshless 
methods, the application of essential boundary conditions is 
very complicated and difficult since the shape functions do 
not satisfy the Kronecker delta criterion. In this paper, the 
penalty function method is adopted to deal with the essential 
boundary conditions. 

The boundless parallel-plate capacitor, which is the 
simplest two-dimension model, is analyzed under the 7 
weighted functions respectively, the errors and the CPU time 
are compared in TABLE I. Obviously, the results by weighted 
functions a)—g) are better than ones by weighed function f), 
it is because the properties of the continuity and 
derivativeness among them are different.  

As an example, the parallel-plate capacitor considering 
of outside region is analyzed by the quadratic spline 
weighted function and quadratic basis. The field-strength 
and the voltage distribution are showed in Fig.1. The result 
is valid. 

The weighted functions’ selection is quite important and 
difficult in meshless method. The three rules, especially the 
second one, have to be obeyed in order to ensure the rational 
results. Further more, the weighted functions must be agree 
with the practical engineering, because the engineering 
problems are so complicated that it is not easy to catch. 

TABLE I. ERROR OF THE RESULTS UNDER THE DIFFERENT 
WEIGHTTED FUNCTIONS 

Weighted 

Function 

Absolute 
Max Value of 

Relative 
Error�%�

Mean Square 
Quantization 
Error�%�

CPU(s) 

Exponential �
Rational Formula 

Cubic Spline 

Exponential �
Quartic Spline 

Quintic Spline 

Conical 

5.32E-06 

2.76E-06 

5.62E-06 

6.46E-06 

2.19E-05 

6.12E-05 

6.14E-04 

5.75E-06 

6.80E-06 

1.22E-05 

1.34E-05 

6.33E-05 

9.22E-05 

1.50E-03 

24.94

26.58

29.00

25.87

26.41

26.47

24.77

Fig.1 1/4 region of the parallel-plate capacitor taking into account fringe 
effect, field-strength and voltage distribution 
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Abstract — This paper presents the description of the point 
collocation method and its application to the electromagnetic field 
computation. The interpolation scheme is based on the fast moving 
least square reproducing kernel approximation. In the method, the 
integration cell is not needed and the essential boundary conditions 
can be enforced directly. Numerical simulations on 1-D and 2-D 
problems are carried out to validate the method.  

INTRODUCTION

Some kinds of mesh-free methods have been 
successfully applied to the analysis of the electromagnetic 
field problems [1,2,3]. The shape functions for most of 
mesh-free methods are derived from the moving least 
square approximation [2,3]. Because the shape functions 
for conventional mesh-free methods do not have the 
Kronecker delta function property, special treatment for 
imposing the essential boundary conditions is required [4]. 
In this paper, the point collocation method based on the fast 
moving least square reproducing kernel (FMLSRK) 
approximation is presented. The method does not require 
the integration cells for the numerical integration and the 
derivative of the shape function is much faster than that of 
the conventional moving least square approximation. By 
some numerical experiments, the rate of convergence and 
the accuracy of the method are shown. 

FAST MOVING LEAST SQUARE REPRODUCING KERNEL METHOD

Let � be a bounded domain in Rn and u(x) be a 
continuous function defined in � � Rn. We also let 
� ={xI �� |I = 1, … , NP } be a set of distributed nodes 
both in �  and on its boundary. When ),...,( 1 n��� � is
an n-tuple of non-negative integers and x=( nxxx ,...,, 21 )�
Rn, we define 

x���

�

n
nxxx ��� ...21

21 , ����
n

xxxD ����

n
2
2

1
1

...x .      (1) 

Now let us introduce the vector of complete basis 
polynomials in Rn of order less than or equal to m such that 

Pm(x) = ),...,,( 21 TLxxx ��� ,
!!
)!(

mn
mnL �

�       (2)

where k� ’s are all multi-indices of n-tuples in 
lexicographical order and | k� | �m. For example, if n = 2 
and m=2, then the multi-indices are arranged in order of 
(0,0),(1,0),(0,1),(2,0),(1,1) and (0,2) and thus Pm(x) is ( 1 , 
x , y , x2 , xy , y2)T.

Using a compactly supported continuous non-negative 
window function )(y� , the resulting shape functions of 
FMLSRK are defined as the following [5]: 
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where |�| �m, T
�

e is the �-th unit vector in !!
)!(
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R  and 
M(x) is the moment matrix defined by 
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In this study, we use the window function of 
4)1()( yy ���  for 1�y .

The functions )(][
I x�

� ’s can be defined as the solution 
of the following matrix equation. 
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We call )(][ x�

�

I the �-th shape function associated with 

the window function � [5]. Note that )(]0[ x�I ’s are 
standard shape functions of mesh-free methods. 

POINT COLLOCATION SCHEME BASED ON FMLSRK APPROXIMATION

We will propose a point collocation scheme in some 
general sense. In order to obtain the mesh-free numerical 
solution of a partial differential equation (PDE), we first 
interpolate the solution u(x) of the PDE such that  

)()(U)( ]0[ xxx
x
�

��

���

I
IIuu             (6)

where the nodal values uI should be determined later from 
the governing equations. The derivatives of u(x) in the PDE 
and on the boundary conditions are replaced with the 
following approximated derivatives 

)()(UD)(D ][,h x¥×xx
x
�

��

��

I
IIm uu ���          (7) 

for  0 < |�|�m . 
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In order to expose a point collocation scheme, we 
consider the following Poisson problem. 

fu ���   in �               (8) 

gu �   on D�  and h
n
u
�

�

� on N�        (9) 

We propose the point collocation discretization of the 
Poisson problem using the approximations (6) and (7) as 
follows: 
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n
n

d
d

i
i

������ xxx ,,        (14) 
where i� , d� and n� are sets of interior nodes, Dirichlet 
boundary nodes and Neumann boundary nodes, 
respectively. Here )( nxn  is the outward unit normal 

vector at n
n

��x .

NUMERICAL SIMULATIONS

To validate the method, one-dimensional problem with 
the analytical solution is solved at first. The model problem 
is  

)10(2

2
���� xx

dx
ud       (15) 

0)0( �u  and 0)1(' �u .      (16) 
Fig. 1 shows the comparison between the numerical and 

analytic solutions. The numerical results are obtained using 
the second and third order scheme (m=2 and 3 respectively) 
with five nodes. For the third order case, the numerical 
result is nearly the same as the analytic solution only with 
five nodes. 

Next numerical test problem is for the study of 
convergence rate of the method. The governing equations 
are

fu ��  in �=[0,1]� [0,1]      (17) 
gu �   on �� ,       (18) 

where f and g are obtained from the solution of 
5)2(),( yxyxu �� .

(a) Second order scheme       (b) Third order scheme 
Fig. 1. Comparison between numerical and analytic solutions. 

 (a) Relative �L error for u         (b) Relative �L error for �u/�x
Fig. 2. Convergence rate with respect to nodal distance h.

(a) Boundary condition       (b) Plot of equi-potential lines 
Fig. 3. Analysis of electrostatic problem 

Fig. 2 shows the plot of the relative error in �L -norm 
when a uniform h-refinement is used. For the case m = 4, 
the convergence rate is observed to be better than that of 
the case m = 2 or m = 3. 

The proposed method is also applied to the electrostatic 
problem. Fig. 3(a) shows the analysis domain and 
boundary condition and (b) shows the plot of computed 
equi-potential lines. Quite accurate solution can be 
obtained for this problem. 

CONCLUSIONS

The point collocation method proposed in this paper is a 
very promising mesh-free method and has many merits 
compared with other mesh-free methods. Therefore the 
proposed method is applicable to many applications such 
as optimization problems, 3-D problems, moving boundary 
problems and so on. 
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Abstract — The natural element method is a kind of meshless 
Galerkin method. The shape function is derived from the natural 
neighbor co-ordinates interpolation scheme. During assembling the 
system matrix, the numerical integration is carried out using the 
Delaunay triangles as the background cells. The method is applied to 
the test problems and simulation results show that the natural 
element method can give accurate solutions for the electromagnetic 
field problems. 

INTRODUCTION

Recently, many meshless methods have been developed 
in solving the electromagnetic field problems [1,2]. These 
methods do not need mesh generation and only data set for 
node distribution and description of the boundaries are 
required. Most of the meshless methods - for example, 
Element-Free Galerkin (EFG) method [3] - employ the 
moving least square (MLS) approximation to compute the 
shape function. The natural element method (NEM) is a 
kind of meshless method employing the Galerkin scheme 
for the solution of partial differential equations. The 
difference from other meshless methods is that the trial 
functions are constructed using natural neighbor 
coordinates. In this paper, the description of the NEM and 
the application of the method to the electromagnetic field 
problems are presented.  

VORONOI DIAGRAM AND DELAUNAY TESSELLATION

The Voronoi diagram and Delaunay tessellation are 
widely used in the field of computational geometry in 
constructing the geometries. For Euclidean space R2,
consider a set of distinct points P = { p1 , p2 , .. , pN}. The 
Voronoi polygon of pn is defined as follows: 

Tn = { x�R2 : d(x,xn ) < d(x,xm) � m � n }        (1) 

where d(xm , xn) is the distance between xm and xn. Each Tn
is the intersection of finitely many open half-spaces, each 
being delimited by the perpendicular bisector. The Voronoi 
polygon can be viewed as the locus of all points closer to pn
than to any other nodes. The Voronoi diagram for a set of 
nodes divides the plane into a set of regions, one for each 
node, such that any point in a particular region is closer to 
that region’s node than to any other node. The Delaunay 
triangles are constructed by connecting the nodes whose 
Voronoi cells have common boundaries(edges). Therefore 
Delaunay triangulation and Voronoi diagram are dual 
structures. 

NATURAL NEIGHBOR INTERPOLATION

If Tn and Tm have a common boundary, pn and pm are 
considered as neighbors. The notion of a set of neighboring 
nodes is generalized by the definition of natural neighbor 
nodes. The natural neighbors of any node are those in the 
neighboring Voronoi cells, or equivalently, those to which 
the node is connected by the sides of the Delaunay triangle 
[4,5].

If the sampling point x in the Delaunay triangulation is 
given, the natural neighbors of x are the set of nodes which 
are connected to it. The number of natural neighbors is a 
function of position x and depends on the local nodal 
density. Consider an interpolation scheme for a function 
u(x) in the form of (2). 

uh(x) = I
n

I
I u)x(

1
�

�

�          (2) 

where uI (I=1, 2, … , n ) is the function value at 
neighboring node I, and )x(I� is the weight associated 
with each node. 

The weight )x(I� in the NEM is taken as the natural 
neighbor coordinates of the point x in the plane. Fig.1 
shows an example of the Voronoi cells. In Fig. 1(a), a point 
x is introduced into the Voronoi diagram and it is observed 
that x has four natural neighbors, namely nodes 1-4. If a 
point x is added, then a new Voronoi cell is placed around x
as shown in Fig. 1(b). The natural neighbor coordinates of 
x with respect to a natural neighbor I is defined as the ratio 
of the area of their overlapping Voronoi cells to the total 
area of the Voronoi cell for x.

)x(I� = )x(/)x( AAI         (3) 

where I = 1, 2, … , n , and A(x) = �
�

n
J JA1 )x( .  

For example, in Fig. 1, the four regions composing the 
closed polygon abcd are called the second-order cells and 
their union (polygon abcd) is a first-order Voronoi cell. The 
natural neighbor coordinates or shape function )x(1�  for 
node 1 is given by (4). 

)x(1�  = Aabfe / Aabcd           (4)
From the definition of )x(I� , the shape function has 

following properties [4]: 

0 � )x(I� � 1 , )x( JI�  = IJ�  , �

�

n

I
I

1
)x(�  = 1    (5) 
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(a) Original Voronoi diagram      (b) 1st and 2nd Voronoi cells for point x
Fig. 1. Construction of natural neighbor coordinates 

The Kronecker-delta property of (5) is one of the main 
different properties compared with moving least square 
approximation scheme. In one-dimension, the shape 
function by the natural neighbor interpolation is precisely 
the same as the 1-D linear finite element shape function [5]. 

IMPLEMENTATION OF NEM 

The implementation of the NEM is similar to that of 
FEM or other Galerkin procedure-based meshless methods. 
The major feature of the NEM is in the construction of the 
shape function and their derivatives. The system matrix and 
forcing vector by the NEM are assembled on a nodal basis. 
For the numerical integration, the integration cells are 
needed. In this paper, the Delaunay triangles themselves 
are used as the integration cells. The essential boundary 
conditions can be directly enforced like the finite element 
procedure because the shape function has Kronecker delta 
property and the trial function of NEM is strictly linear 
between two nodes that belong to an edge of a Delaunay 
triangle on the boundary of the convex hull [4]. Generally 
the system matrix from the NEM is symmetric and sparse 
but not necessarily banded. 

NUMERICAL RESULTS

First example is the 2-D simple test problem to validate 
the NEM. The equation to be solved and the exact solution 
are given by: 

u�  = )2sin()2sin(8 2 yx ����        (6) 
)2sin()2sin(),( yxyxu ���         (7) 

In performing the numerical integration, the three-point 
Gauss quadrature is used for each Delaunay triangle. The 
numerical solution of u(x,y) by the NEM is plotted in Fig. 2 
when the node distribution of 21� 21 grid with regular 
node-spacing is used in the simulation. In this case, the 
maximum relative error of u compared with the exact 
solution for each node is less than 1[%]. Next numerical 
example of the NEM is the application to the electrostatic 
problem. The problem definition is shown in Fig. 3(a) and 
nodal discretization for analysis is shown in Fig. 3(b). Fig. 
4 shows the comparison of the NEM results with FEM 
ones. As shown in the figure, the NEM results show very 
good agreement with FEM ones. However, the 
computational cost of the NEM is somewhat higher 
because the NEM requires the more steps for Delaunay 
tessellation, searching for natural neighbors and so on.

Fig.2. Plot of numerical solution of (6). 

(a) Problem definition           (b) Nodal discretization 
Fig.3. Application of NEM to electrostatic problem 

(a) Potential distribution    (b) Electric field intensity 

Fig.4. Comparison of NEM results with FEM ones along line l1 (Line l1 is 
defined in Fig. 3(a) and thickness of dielectric material is 10[mm]) 

CONCLUSIONS

In this paper, the description of the NEM and the 
application to the electromagnetic field problems are 
presented. The shape function of the NEM has many 
common properties compared with that of FEM. Therefore, 
the NEM is very promising numerical method for 
electromagnetic field computation.
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Abstract The Hybrid Stepping Motor (HSM) is described. Though
full 3D FEA is the proper method to analyze the HSM, this paper used
Quasi - 2D FEA for the axial cross section to save computation time. For 
the purpose of quasi-2D FEA, the virtual magnetic barrier  and
equivalent permanent magnet model of HSM are proposed

GENERAL

Hybrid Step Motors (HSM) are commonly used for the
most part in the industry because HSM has high torque and
resolution advantages with comparing with other types of
stepping motor.

Since HSM has a great number of small-teeth on the stator 
and rotor surface and very small air gap, the magnetic
saturation in the teeth becomes severe with increasing the flux 
density in the air gap. In addition, both radial and axial flux is 
produced because of axially magnetized permanent magnet
and geometric characteristic. These make the analysis of
HBM more difficult, the 3D Finite Element Analysis (FEA) is 
one of solutions for non-linear analysis of HBM under this
situation, but a large amount of computation time is necessary. 
This paper introduces the virtual magnetic barrier and the
virtual equivalent permanent magnet magnetized in radial
direction for the 2D FEA of HBM.

ANALYSIS MODEL

Fig. 1 show the basic construction of a 2-phase HSM
having 8 stator poles with 6 teeth per pole and 50 teeth on the 
rotor. The permanent magnet is magnetized in z-direction.

The step angle of this motor is 1.8°, the period of cogging
torque is 3.6° and the airgap length is 0.005mm. Further
details are shown in table 1.

QUASI -2D FE ANALISYS

Though full 3D FEA is the proper method to analyze the
HSM, we used 2D FEA for the axial cross section to save
computation time. In order to calculate the torque of HSM
with 2D analysis, the permanent magnet in the HSM is
replaced to equivalent virtual magnet which is axially
magnetized and virtual magnetic barrier on both sides make
the magnetic flux oriented to radial direction. This new
approach produces correct flux distribution.

Fig.2 shows flux distribution in the pole of HBM as a
result of 2D FEA using virtual magnet barrier. Although the
flux route of 2D model is different from that of real situation, 
the flux distribution in the air gap is very similar to that of
real one. That is due to virtual magnetic barrier placed at the
both sides of magnet and the virtual equivalent permanent
magnet in radial direction.

Fig. 1 The basic construction of a 2-phase HSM

TABLE I. SPECIFICATION OF HSM

Stator Rotor
Pole number 8 Teeth number 50
Teeth number per pole 6 Outer diameter 12.95 (mm)
Phase number 2 Permanent magnet thickness   2 (mm)
Turns per phase 38 Residual flux density 1.2 (T)
Inner diameter 13 (mm) Airgap length  0.05 (mm)
Outer diameter               21 (mm)
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EXPERIMENTAL AND RESULTS

In order to get detent and hold torque of HSM, the
experimental setup is composed of a pulley, a string, a weight, 
and position detector with DSP based measurement system
like Fig.3.

The resolution of position detector is 0.036°. Only one
fourth of period can be successfully measured by above
referred method

Fig.4 shows the cogging torque of HBM, which is
calculated by 2D analysis. This result is compared with that
of a 3D analysis, considered as reference result. A few typical 
results are also compared with measurements. Accuracy is
sufficient to assess that the suggested method, considering
magnetic saturation, realize a good compromise between
simulation time and precision
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Fig. 3 Flux distribution

Fig. 2 Flux distribution by 2D FEA
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Abstract – The paper presents two different approaches for the 
computations of isotropic and anisotropic electrostatic problems by 
means of the cell method. The results obtained by this technique are 
compared with those obtained by a first order FEM based algorithm. 

INTRODUCTION 

The finite formulation of the electromagnetism developed 
by E. Tonti [1,2] employs the field equations in their integral 
form and doesn’t require mathematical differential operators 
(gradient, curl, divergence). The peculiarity of this technique 
is the use of two tessellation systems (called primal simplicial
and dual simplicial meshes) to write the integral equations. 
The primal grid constitutes, by means of its own domains, 
namely the nodes, the support of the configuration variable 
(in our case the electrical scalar potential V) while the dual 
grid constitutes, by its own volumes, the support of source 
variable (the electrical charge Q). Configuration and source 
variables are correlated by the constitutive equations which 
contain the material properties and the metrical notions. By 
imposing also each finite volume of the dual grid to satisfy 
the balance equations (i.e. Gauss electric law), an algebraic 
system is obtained whose solution provides the unknown 
values of the configuration variables. 

ISOTROPIC PROBLEM 

In the following the mathematical formulation developed 
for the numerical analysis of a 2-dimensional axisymmetric, 
non homogeneous and isotropic problem is presented. 

The analysis domain is discretized in a Delaunay (primal 
grid) and Voronoi (dual grid) tessellation (Fig. 1): this kind of 
mesh can be applied to regions of every shape and the 
constitutive equation can be directly written on its domains. 

The finite quantities used to define the problem are the 
electric charge Q, the electrical scalar potential V and the 
electrical flux  through the dual grid surfaces. Due to the 
axisymmetric geometry (Fig. 2), each one of these surfaces 
Ai,j,k, is obtained by revolution of the line ai,j,k along a circular 
path so becoming the lateral surface of a frustum of cone: 

� � kjikji axxA ,,21,, ��� �      (1) 

Fig. 2 also shows the metric distance li,j between the 
primal grid nodes i and j (perpendicular to the Ai,j,k surface). 

The electrical quantities V and  are related each other 
through the constitutive equation which is written for 
isotropic materials of the primal kth cell: 

� �ji
ji

kji
kkji VV

l
A

���

,

,,
,, �      (2) 

where the value of the dielectric constant � is considered. 
The usual boundary condition on the symmetry axis (i.e. 

Neumann condition) is naturally obtained imposing the 
electric flux variable  with a null value. 

Adding the Gauss law, written for each dual cell: 

Fig. 1.  Detail of the Delaunay (primal) – Voronoi (dual) tessellation used in
the following application. 

Fig. 2.  Axisymmetric revolution. 
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ii i Q���       (3) 

a complete equation system is obtained (corresponding to the 
“ fundamental system” of the FEM) in the unknown variables 
V which is solved by means of the Gauss elimination method. 

ANISOTROPIC PROBLEM 

 In order to solve anisotropic problems the previous 
formulation is not suitable. Let’s consider instead that the 
scalar potential V can be expressed, inside each primal cell, by 
the following linear function: 
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where [l] is the metrical distance matrix, [E] the column 
vector of electric field components (which are the coefficients 
of the linear function of V) and [V] is the column vector 
containing the potential differences between two of the three 
vertex of a primal cell indicated by i, j and h. The flux 
through the surfaces Ai,j,k and Ai,h,k can be expressed as: 

� �� � � �kkkhikjiki EAA �,,,,, ���     (5) 

where k is the permittivity tensor of the primal kth cell and 
[E] is the column vector of the electric field components. 
Using (4) (5) in relation (3), a complete system is obtained, 
which results the same of the first order FEM method [3]. 
 The two procedures have been implemented in Matlab 
environment which has been interfaced with a mesh generator 
specifically developed for producing the dual complex cells.

EXAMPLE OF APPLICATION 

 The previous mathematical formulations have been used 
to compute the electrical quantities of the configuration 
shown in Fig. 3, axisymmetric around A-B axis. 

A voltage of 1000 Volt is applied between the two 
plates:in a first case the dielectric was considered isotropic 
( r=100), in a second case it was assumed anisotropic: 
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The analysis domain was meshed by a Delaunay 
triangular grid made up of 1682 nodes and 3208 elements. 

At the aim of comparison, the same problems were solved 
with a first order FEM algorithm using the same unstructured 
triangular grid; table I reports the maximum discrepancy 
between the computed scalar potential V values: the very low 
difference found in the anisotropic case is due to machine 
round error. 

Fig. 4. shows electrical quantities computed with the cell 
numerical method in the anisotropic case. 
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Fig. 4.  Electrostatic field values computed by the cell method in the
anisotropic case. 

Fig. 3.  Geometry used in the example (linear dimensions in mm). 

TABLE I 
COMPUTED VALUES AND DISCREPANCY

 Isotropic problem Anisotropic problem 

Node number 1672 1462 
Node coordinates (m) 0; 0.62 0.21; 0.582679 

FEM potential (V) 483.6357  269.7878 
Cells potential (V) 483.2615 269.7878
Discrepancy (V) 0.3742 4.77·10-12
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Abstract – The accurate calculation of the potential derivatives is a 
key process in computing electromagnetic field by finite element 
method (FEM). According to the continuity of electromagnetic field, 
we propose a modified FEM formula, in which a high order 
polynomial function conquering all nodal potentials in a group of 
neighboring elements is taken as a smooth constraint to the FEM 
functional. Compared with the traditional FEM, the method, can 
considerably improve the field calculation accuracy, and reduce the 
scale of the FEM stiff matrix. Numerical experiments show that the 
errors of the computed field vectors are reduced by one or two 
orders. 

I. INTRODUCTION 

The Finite Element method (FEM) has been applied 
to a variety of electromagnetic problems. The variables 
used in the FEM solutions are often the potentials on 
nodes or edges. In order to obtain the physical field 
values, it is necessary to find the derivatives of the 
potentials. Thus, the accurate calculation of the potential 
derivatives becomes a key step in the computation of 
electromagnetic field by FEM.  

There are two ways that had been explored to 
improve the numerical field results. The first approach is 
to refine the mesh adaptively according to the field 
distribution that considerably increases the scale of 
computation; the second method is to employ high order 
interpolation in the elements. High order element leads to 
more complex integrations in deducing the FEM stiff 
matrix and sometimes even the numerical integrations 
have to be used.  
 In this paper, we propose a new FEM algorithm in 
which elements are grouped into a patch and the 
potentials in the patch are constrained by a flexible 
smooth function. The constraint equations can be easily 
dealt with as a linear transformation to the standard FEM 
equations. Therefore the derivatives of the potentials can 
be obtained analytically in the patch, while the linear 
interpolation in elements is remained as in the usual 
FEM. 

II. SMOOTH FITTING OF POTENTIALS
According to the continuity of electromagnetic field, 

the potential and the field vectors are of at least second 
order derivatives in the interior region of a continued 
medium. Although the potentials used in FEM are 
assumed piecewise continuity, no great accuracy losses 
occur in the accumulated energy functional. But for 
finding the potential derivatives, good accuracy cannot 
be expected if only the information of nodes in one 

element is used. So it is desirable that the approximation 
in terms of potential used in the energy computation and 
used in the differentiation should be different. 

Consider a group of neighboring elements, called an 
element patch. If the potential of field is smooth enough, 
then the nodal potential values in FEM solutions should 
belong to a continued and smooth expression which is 
valid over the element patch. Assuming that the 
expression takes the form of polynomial expansion, 

pa*
hu                 (1) 

where the vector P consists of the base terms of 
polynomials and the vector a is a set of parameters to be 
determined. For two dimensional cases we can use the 
quadratic expansion as, 

22 ,,,,,1 yxyxyxp
 Given a set of nodal potential values uh within an 
element patch, a smooth potential surface can be fitted by 
means of LSM method, so that the best parameters of the 
surface are obtained. 

III. FEM WITH GROUPED SMOOTH CONSTRAINTS
The smooth fitting of potentials is only a 

post-processing of FEM, which does not enrich the 
information of FEM itself. If we consider the smooth 
continuity be an inherent characteristic of the field, then 
the nodal potential values uh in the element patch can be 
replaced by the smooth function uh

*. That is to say (1) 
can be taken as a smooth constraint equation to the FEM 
functional. This constraint brings additional information 
into the FEM. 

The constraint of all the nodal potential within the 
element patch can be assembled in matrix notation 

Pau h                   (2) 
where Pij = pj(xi, yi) for 2D cases, j=1,2,…m, i=1,2,…n1

and n1 is the number of nodes within the element patch.  
The energy functional of FEM is of the form as  

fuKuuu TT

2
1)(E             (3) 

where, K and f denote the stiff matrix and the exciting 
force vector respectively, the vector u represents the 
nodal potentials on the mesh. 

With the constraint of (2), the components of u are 
not independent each other. Let the indexes of the nodes 
within the patch begin with 1 and other nodes begin with  
n1 +1,  then a new vector u’ can be constructed as, 
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and I is the identity matrix.  
Substitute (4) for the vector u in (3), we get  

MfuKMuMuuu T''TT'

2
1)()( 'EE

From the minimization of the above functional, the 
equation of the FEM with smooth constraints is obtained. 

MfKMuM 'T              (5) 
It can be seen that the transformed stiff matrix MTKM is 
also symmetrical and positively definite; therefore the 
standard FEM equation solver can be directly applied to 
it. It should be noted that in order to avoid the under 
determination problem, the number of nodes in an 
element patch should be greater than the number of 
polynomial items used in that patch, namely n1 > m. Thus
the scale of the transformed stiff matrix will be reduced.    

IV. EXAMPLES
We calculated a 2D magnetic field in a transformer 

window shown in Fig.1 by the proposed method and by 
the standard FEM respectively. The flux densities in and 
between the primary and secondary windings are 
examined. The region boundary made of iron core is 
assumed being of infinite permeability, and the node K at 
the left-bottom corner on the boundary is set as reference. 
There exists an analytical solution for this field problem.  

Fig.1. 2D FEM model of a magnetic field 
In order to make the comparison more clear, we take 

only one check point at once. Simple element patch is 
constructed by the elements around the check point. For 
instance, the patch of the node E consists of the elements 
in the rectangle JIHGJ. And quadratic polynomial 
expansion is adopted in the patch.  

Fig.2. calculated potential surface in JIHGJ by the new method 

Fig.2 shows the potential surface calculated by the 
proposed method in JIHGJ. It can be seen that the 
potential is smooth not only in every element but also 
between the elements in the patch. 

We also tested the two FEM when their mesh 
around the check point is locally refined as in Fig.3. 

Fig.3. mesh refinement around a node
The relative errors of the flux density calculated by 

these methods at seven nodes along the segment AB in 
Fig.1 are illustrated in Fig.4. It is evident that the 
refinement of the mesh does improve the accuracy of the 
FEM field computation, while the FEM with grouped 
smooth constraint proposed here can improve the 
accuracy more considerably. The relative errors of the 
computed flux density are reduced by one or two orders.   
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Fig.4 The relative errors of the flux density on the nodes along AB:
traditional FEM, FEM with local mesh refinement,  

new FEM, newFEM with local mesh refinement

V.CONCLUSION 

This paper proposed a novel FEM with grouped 
smooth constraints. Compared with the traditional FEM, 
it gives smoother and more reasonable calculation results 
of electromagnetic field. The relative errors of the 
computed flux density can be reduced by one or two 
orders. 
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Abstract— In this paper it is shown that admittance bound-
ary conditions for electromagnetic boundary value problems in
the frequency domain can be formulated for the Finite Integra-
tion Technique using augmented dual grids. The details are pre-
sented both for orthogonal dual grids and for barycentric dual
grids composed either of (oblique) parallelepipeds, (oblique) tri-
angular prisms or tetrahedra.

I. INTRODUCTION

It is well known that the solution of an electromagnetic
boundary value problem can be numerically approximated by
means of the Finite Integration Technique (FIT) [1], [2], [3].
Precisely, firstly the � region in which the problem is consid-
ered is discretized by means of a primal grid � and a dual grid
��. Then the electromagnetic field is discretized over the dual
grids � and ��. Lastly the Maxwell’s equations and the consti-
tutive relations are discretized.

In the FIT however the discretization of boundary conditions
is not explicitly considered. In particular the FIT equations, as
reported in [1], [2], [3], implicitly assume magnetic wall bound-
ary conditions. In [4] it is shown that properly augmenting the
dual grid �� with nodes, edges and faces on the boundary �� and
discretizing the electromagnetic field over the augmented dual
grid, discretized boundary conditions can be introduced.

In this paper, for electromagnetic boundary value prob-
lems in the frequency domain, the discretization of admittance
boundary conditions is formulated using augmented dual grids.
Firstly, orthogonal dual grids � and �� are considered, such that
the edges and faces of the primal grid � are orthogonal to the
corresponding faces and edges of the dual grid ��. In this case, it
is shown that, using augmented dual grids, admittance bound-
ary conditions can be naturally discretized similarly to the dis-
cretization of constitutive relations. Barycentric dual grids are
then considered, such that the primal grid � is composed of
either (oblique) parallelepipeds, (oblique) triangular prisms or
tetrahedra and the dual grid �� is the barycentric subdivision [5]
of ��. For such dual grids a general formulation of the FIT is
given in [6]. It is shown that, using augmented dual grids, the
discretization of the admittance boundary conditions can be de-
duced, similarly to the discretization of constitutive relations in
[6]. A first numerical results is also presented.

II. DISCRETIZATION OVER AUGMENTED DUAL GRIDS

In order to discretize boundary conditions, augmented dual
grids are introduced as in [6]. Precisely the intersection with
�� of each volume, face and edge of �� defines respectively one
face, edge and node added to ��. These added faces, edges and
nodes constitute the dual grid ��� of the primal grid �� consti-
tuted by the nodes, edges and faces of � that belong to �� .
Therefore the elements of ��� are oriented as the corresponding
elements of ��. The union of the �� and ��� grids defines the
augmented dual grid ���, for which volume-face, face-edge and
edge-node incidence matrices can be introduced as for the grid
��.

The discretization of the electromagnetic field is completed,
discretizing over the elements of the ��� dual grid. In partic-
ular, it is introduced the �� � vector of the line integrals of the
���� magnetic field along the edges of ���. The elements of this
vector correspond to the elements of the � � vector of the line
integrals of the ���� electric field along the edges of ��.

Maxwell’s equations are naturally discretized in terms of the
incidence matrices of the primal grid � and of the augmented
dual grid ���, instead of the dual grid ��. In this way dis-
cretized Maxwell’s equations exactly include the contribution
of the electromagnetic field on the �� boundary. Discretized
constitutive relations do not change using the augmented dual
grid ��� instead of the dual grid ��. Thus they can be written both
for orthogonal dual grids as in [1], [2], [3] and for barycentric
dual grids as in [6].

Discretized boundary conditions have to be introduced in or-
der to complete the formulation of the discretized electromag-
netic boundary value problem. If either the tangent component
of the electric field ���� or the tangent component of the mag-
netic field ���� are imposed over �� , discretized boundary con-
ditions can be exactly written, imposing the values of either the
�� vector or the �� � vector. More generally, admittance bound-
ary conditions are expressed at each � over �� by the condition

����� � ������ ���� � Y��� ����� � ����� (1)

where ���� is the outward unit vector normal to �� at �, and
Y��� is the admittance at �. In the hypothesis that Y��� is con-
stant within each face of ��, boundary conditions can be ap-
proximated both for orthogonal and barycentric dual grids.
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III. ORTHOGONAL DUAL GRIDS

For orthogonal dual grids, the faces of �� are, by construction,
orthogonal to the corresponding edges of �. Therefore also the
edges of ��� are orthogonal to the corresponding edges of � �.

As a consequence of (1), at each � over �� , the component
of ���� tangent to �� and the component of ���� tangent to
�� form, together to the ���� outward unit vector normal to
�� , a right tern of axes, and the ratio of their moduli is Y���.
Thus, locally approximating the ���� electric field and the ����
magnetic field with constant vectors, admittance boundary con-
ditions are naturally approximated by equation

�� � � ���� (2)

in which �� is a diagonal matrix, whose �-th diagonal element
is the product of the admittance times the length of the �-th edge
of ��� divided by the length of �-th edge of � �. This relation is
exact when the ���� electric field and the ���� magnetic field
are spatially constant.

IV. BARYCENTRIC DUAL GRIDS

For any primal grid � and augmented dual grid ��� , if the
relation between �� � and �� is approximated by (2) by means of
a �� matrix, then twice the flux of Poynting’s vector across �� ,

�
��

������ ����� � �Y��� ����� � ������� ��� (3)

is approximated by
��� � ������

�� (4)

In fact (4) converges to (3) for finer and finer discretizations,
under mild assumptions, as proved in [4]. The converse ap-
proach is here considered, as in [6]: if matrix�� is such that (4)
approximates (3), does (2) approximates the relation between
�� � and ��? Hereafter a sufficient condition is given when the
primal grid � is composed either by (oblique) parallelepipeds,
(oblique) triangular prisms or tetrahedra and the dual grid �� is
the barycentric subdivision of �, as in [6],

Let the component of the ���� electric field tangent to �� be
approximated by

����� � ���� ��� �

���
�

�

	�� ����� ��
�
� ���� (5)

in which 	�� is the �-th element of the �� vector and ��
� ��� is

the �-th weight function of ���� ��, defined as in [6]. Using (5)
for ����, it results

��� ������ �

�

�
��

����� � ����� � �Y�������� � ������� ���

where the element at the �-th row and 
-th column of � � is
�
��

����
�
� ���� � �Y��� ����� ��

�
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Fig. 1. Per cent error in the energy norm at ���� � ��� as a function of �.
(a) orthogonal dual grids. (b) barycentric dual grids.

This �� matrix approximates the relation between �� � and ��.
In fact the following necessary and sufficient condition is satis-
fied �

��

�������
�
� ���� �� �

�
�
�

���� ���

in which ��� is the �-th edge of ���, of tangent ����.

V. NUMERICAL RESULTS

The field inside a matched section rectangular waveguide,
under TE�� excitation, has been evalued as a simple test case.
The analyses have been performed at different normalized an-
gular frequencies ���, using a primal grid � composed of tri-
angular prisms. The resulting error in the norm of the energy
[4] is shown in Fig. 1, as a function of the maximum diameter
� of the volumes of �, both for orthogonal and barycentric dual
grids.

VI. CONCLUSION

In this paper admittance boundary conditions for the solution
of electromagnetic boundary value problems in the frequency
domain by FIT, have been formulated using augmented dual
grids. The derivation has been carried out both for orthogonal
dual grids and barycentric dual grids.
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Abstract--A multilevel subgridding scheme with a different 

interpolation scheme is presented. In order to model a structure with fine 

components using FDTD method, the accuracy of the results can be 

improved by utilizing multilevel subgridding scheme. In this scheme, the 

fields on the boundary between neighbor subgridding regions are 

coupled using simple interpolations. The validation of the scheme is 

tested by computing the resonant frequencies of a cavity, and the results 

are compared with uniform grid FDTD and another multilevel 

subgridding scheme solutions.

I. INTRODUCTION

DTD method was presented by K. S. Yee in 1966[1]. It is a 

useful numerical method to analyze the propagation of 

electromagnetic wave. In FDTD method, Maxwell’s curl 

equations are discretized by utilizing central-difference 

equations with second-order accuracy. Since the solution 

resolution is influenced by the grid size, the accuracy can be 

improved by using finer grids to discretize the computational 

space, but the memory and computation requirements are also 

increased. 

To reduce the memory requirement, small size components 

are discretized by subgrids, and the remaining volume is filled 

with coarse grids. In this subgridding scheme, the coarse-grid 

region and the subgrid region are also computed by FDTD 

method. In [2], the size of a coarse grid is 4 that of a subgrid, 

and the fields in the subgridding region and on the boundary 

between coarse grids and subgrids need to be updated four 

times for every time step of coarse-grid region. The fields on 

the boundary between coarse grids and subgrids are coupled 

using temporal and spatial interpolations. Zivanovic et al. [3] 

analyzed problems using a 2:1 grid-subgrid size ratio, and 

discussed the interpolations of both electric and magnetic 

fields. M. W. Chevalier et al. [4] discussed a subgridding 

scheme, which allowed conducting materials to traverse the 

boundary, while keeping the grid-subgrid ratio to 3 : 1. C.-C. 

Chang and S.-K. Jeng [5] developed a multilevel subgridding 

scheme, and verify the scheme by solving scattering and cavity 

problems. In this paper, we developed a multilevel subgridding 

scheme with a similar interpolation as in [4], and compare the 

results of solving a cavity problem with uniform grid FDTD 

and the results from [5].

Manuscript received November 15, 2002.

II. METHOD

The multilevel subgridding scheme in this paper is 

developed utilizing the similar interpolations as [4]. To take 

two-level subgridding scheme as an example, we name the 

original subgridding region as the first-level subgridding 

region, and set the second-level subgridding region in the 

first-level subgridding region. When the size of a coarse grid is 

3 that of a first-level subgrid, and the size of a first-level 

subgrid is 3 that of a second-level subgrid, the fields in the 

first-level subgrids and on the boundary between the coarse 

grid and the first-level subgrids need to be updated three times 

for every time step of coarse grid, and the fields in the 

second-level subgrids and on the boundary between the 

first-level subgrids and the second-level subgrids need to be 

updated three times for every time step of the first-level subgrid. 

A brief description of the procedure is given in Fig. 1. In Fig. 1, 

when e2 and h2 are computed three time steps of the 

second-level subgrid, the h2 that have collocated h1 need to be 

transferred to first-level subgrids. Similarly for the first-level 

subgrids, h1 need to be transferred to coarse grids.

III. RESULTS

We illustrate the accuracy of the multilevel subgridding 

scheme by solving a cavity problem. A cavity with perfect 

conductor walls and a perfect conductor fin is analyzed. The 

specifications of the structure are shown in Fig. 2. The 

thickness of walls is 2mm, and the cavity is filled with air. For 

the cavity shown in Fig. 2, if we don’t consider the fin, the first 

and second resonant frequencies are about 2.0 GHz and 3.3 

GHz for TM mode. We set the coarse grid size to 2 mm, which  

is 1/20 wavelength ( ) at 7.5 GHz. Five simulations were 

performed by using 1) uniform coarse FDTD with a grid size of 

2 mm, 2) uniform fine FDTD with a grid size of 2/3 mm, 3) 

two-level subgridding scheme in [5], 4) one-level subgridding 

scheme for FDTD with a coarse grid cell size of 2 mm, and 

subgrid size of 2/3 mm, and 5) two-level subgridding scheme 

for FDTD with a coarse grid cell size of 2 mm, first-level 

subgrid size of  2/3 mm, and second-level subgrid size of 2/9

mm. The first-level subgridding region is set 25*13 coarse 

grids when using one-level subgridding scheme, and add 

second-level subgridding region of 33*27 first-level subgrids 

when using two-level subgridding scheme. Fig. 3. shows the 

normalized Ez field at the observation point in time domain. 

A New Multilevel Subgridding Scheme for Two-Dimensional FDTD method
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After finishing the iteration for our subgridding scheme, we 

performed a 24000-points FFT to compute the resonant 

frequencies of the cavity. The results of five simulations are 

listed in Table I. In case 2, it is found that the first and second 

resonant frequencies are 2.425 GHz and 3.775 GHz, 

respectively. Comparing with case 3, case 4 has a more 

accurate 2
nd

 resonant frequency, and case 5 has a more accurate 

2nd resonant frequency than case 4. When comparing with the 

results from cases 1 and 3, results from cases 4 and 5 have a 

better solution accuracy. Since we had not optimized our 

program, the flops require for an optimized scheme should be 

less than the results given in Table I.

IV. CONCLUSIONS

A multilevel subgridding scheme with an interpolation 

similar to [4] has been presented. It has been shown that this 

multilevel subgridding scheme can improve the accuracy of 

results. Besides, the variation of fields in time are stable after 

six thousands of time-steps for two-level subgridding scheme.
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Fig. 1  The flow-chat for new multilevel subgridding scheme.
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Fig. 3. Normalized Ez field at the observation point in time domain.

TABLE I

RESONANT FREQUENCIES AND FLOPS USED

Resonant frequency (GHz)
Case

First Second
Flops (M flops)

1 2.375 3.700 350

2 2.425 3.775 2768

3 2.4125 3.7125 ------

4 2.4125 3.7250 1664

5 2.4125 3.7375 5451
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Abstract--A second-order accurate in time and fourth-order accurate 
in space FDTD(2,4) subgridding scheme is presented. By using 
subgridding scheme at fine components in a structure, the necessary 
resolution can be obtained. Some error introduced in the second-order 
central difference approach can be reduced by using FDTD(2,4) method. 
The accuracy of the scheme is tested by computing the resonant 
frequencies of a cavity, and the results are compared with uniform mesh 
FDTD solutions.

I. INTRODUCTION

he finite difference time domain (FDTD) method is a 
useful technique to analyze electromagnetic wave 

propagation [1]. In FDTD method, Yee discretized Maxwell’s 
curl equations by utilizing central-difference equations with 
second-order accuracy. In order to reduce the numerical 
dispersion, utilizing a scheme with high-order accuracy to 
analyze problems is a useful alternative. T. Deveze et al. in [2] 
developed a fourth order scheme for the FDTD algorithm, and 
considered the dispersion and the stair case problems. They 
discretized Maxwell’s curl equations by utilizing 
central-difference equations with fourth-order accuracy. M. F. 
Hadi et al. in [3] developed the second-order difference in time 
and fourth-order difference in space FDTD scheme, and used 
the scheme to model electrically structures that were thousands 
of wavelengths large.

Beside reduce the numerical dispersion, reducing the 
memory usage is also important. Since numerical dispersion is 
controlled by the grid size, the solution accuracy can be  
improved by using finer grids to discretize the volume, but the 
memory and computation requirement are increased 
accordingly. Solving electromagnetic problems utilizing a 
FDTD subgridding scheme is an approach to reduce the 
memory usage by controlling the distribution of the degrees of 
freedom. In a subgridding scheme, small size components in a 
structure are discretized by subgrids, and the residual of the 
volume is filled with coarse grids. The coarse-grid region and 
the subgrid region are also computed by FDTD method and are 
kept in time step. The fields on the boundary between 
coarse-grid region and subgridding region are coupled using 
temporal and spatial interpolations. In [4], the size of a coarse 
grid is 4 that of a subgrid, and the fields in the subgridding 
region and on the boundary between coarse grids and subgrids 
need to be updated four times for every time step of coarse-grid 
region. Zivanovic et al. [5] analyzed problems for a 2:1 

Manuscript received November 15, 2002.

grid-subgrid size ratio, and discussed the interpolations of both 
electric and magnetic fields. M. W. Chevalier et al. in [6] 
discuss a subgridding scheme, which allows conducting 
materials to transverse the boundary. The grid-subgrid ratio in 
[6] is 3 : 1. Georgakopoulos et al. in [7] developed a hybrid 
fourth-order FDTD utilizing a second-order FDTD subgrid. 
They analyzed an electromagnetic problem for a subgridding 
scheme, with coarse grids are computed using the FDTD(2,4) 
method and subgrids are computed for traditional FDTD 
method.

In this paper, we developed a subgridding scheme for 
FDTD(2,4) method. For this subgridding scheme, coarse grids 
and subgrids are computed for FDTD(2,4) method. The 
accuracy of this scheme is compared with traditional FDTD 
method, FDTD(2,4), and the subgridding scheme in [7] by 
solving resonant frequencies of a cavity.

II. METHOD

The subgridding scheme used in this paper is utilizing a 
similar interpolations as in [6]. Comparing with the scheme in 
[7], the accuracy of the solution is improved by applying 
FDTD(2,4) method to the subgrids. For the central-difference 
equations with fourth-order accuracy in [2], En(r) can be 
obtained by En(r+0.5), En(r-0.5), En(r+1.5), and En(r-1.5).  
Unfortunately, the fields in subgrids close to the boundary 
between coarse grids and subgrids cannot be obtained by 
utilizing central-difference equations to maintain the fourth-
order accuracy.  In this paper, forward and backward 
difference equations are used to compute the fields close to the 
boundary between coarse grids and subgrids to bypass this 
problem.

When the size of a coarse grid is 3 times that of a subgrid, the 
fields in the subgrids and on the boundary between coarse grids 
and subgrids need to be updated three times for every time step 
of coarse grid, where the fields in the subgrids close to the 
boundary between coarse grids and subgrids can be obtained 
by utilizing forward and backward difference equations.  The 
fields in the residual subgrids can be obtained by utilizing 
central-difference equations. The fields on the boundary 
between coarse grids and subgrids can be computed by 
utilizing the interpolations in [6].

III. RESULTS

We illustrate the accuracy of the subgridding scheme for 
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FDTD(2,4) method by solving a cavity problem. A cavity with 
perfect conductor walls and a perfect conductor fin is analyzed. 
The specifications of the structure are shown in Fig. 1. The 
thickness of walls is 4mm, and the cavity is filled with air. For 
the cavity shown in Fig. 1, if we don’t consider the fin, the first 
and second resonant frequencies are about 2.0 GHz and 3.3 
GHz for the TM mode. We set the coarse grid size to 2 mm, 
which is 1/20 wavelength ( ) at 7.5 GHz. Five simulations 
were performed by using 1) traditional FDTD method with a 
grid size of 2 mm, 2) traditional FDTD method with a grid size 
of 2/3 mm, 3) uniform FDTD(2,4) method with a grid size of 2
mm, 4) the subgridding scheme in [7] with a coarse grid size of 
2 mm, and a subgrid size of 2/3 mm, and 5) the subgridding 
scheme for FDTD(2,4) method with a coarse grid size of 2 mm, 
and a subgrid size of 2/3 mm. The subgridding region is set 
25*11 coarse grids. Fig. 2. shows the normalized Ez field at the 
observation point in time domain. After finishing the iteration 
of 12000 time steps of coarse grid, we utilize the fast Fourier 
transform (FFT) to compute the resonant frequencies of the 
cavity. The results of five simulations are listed in Table I. In 
case 2, it is found that the first and second resonant frequencies 
are 2.45 GHz and 3.775 GHz. In case 4 and 5, it is found that 
the resonant frequencies are identical. Comparing with case 1, 
case 3 has more accurate resonant frequencies, and case 4 and 5 
have more accurate resonant frequencies than case 3. Our 
program can be optimized to reduce the computational 
requirement to less than the results given in Table I.

IV. CONCLUSIONS

A subgridding scheme based on FDTD(2,4) method has 
been presented. It has been shown that this subgridding scheme 
can improve the accuracy of the results. The variation of fields 
in time are stable after twelve thousands time-steps. 
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Fig. 2. Normalized Ez at the observation point in time domain.

TABLE I
RESONANT FREQUENCIES AND FLOPS USED

Resonant frequency (GHz)Case
First Second

Flops (M flops)

1 2.375 3.700 350
2 2.450 3.775 2768
3 2.400 3.725 851
4 2.425 3.750 2137
5 2.425 3.750 3445
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Design of the Recording Head considering the Field Gradient in 
High Density Magnetic Recording 

Abstract � The gap size of the write head in magnetic recording 
system is so small compared to head size, which causes the difficulties in 
numerical analysis and design. In this paper, two step of the analysis is 
presented. After the analysis of the full size head by using conventional 
3D FEM, the field gradient of the small  gap region is computed by 
Laplacian analysis. Write field and field gradient of the Longitudinal 
and perpendicular head are to be computed effectively. By using this 
algorithm, optimum shpapes of the write head in high density recording 
system could be designed. 

I. INTRODUCTION

The recording density in magnetic recording system is 
represented by multiplying the bit density and track density. 
To increase the recording density, not only the magnitude of 
the magnetic field but also the field gradient of the recording 
head are need to be high. In general, the track density of the 
magnetic recording is depended on the width of the write 
head and the linear density is mainly depended on the field 
gradient in down track direction. So, the magnitude of the 
head field at the gap recording region is needed to be high 
enough to overwrite the high coercive recording media, and 
together, magnetic field gradient of the write head is needed 
to be high enough to increase the linear density in the data 
track.  

The size of the head gap is very small compared to head 
size, and recording is occurred in the small gap region. So, if 
the number of the mesh is not sufficient, field gradient is not 
computed correctly. If the number of mesh is increased so as 
to compute field gradient, total number of the mesh is too big 
to solve.  

In this paper, two step to solve this problem is presented. 
The magnitude of the magnetic field is computed by the 
conventional 3D FEM, and then, field gradient og the write 
head in the gap region by using Laplacian. 

II. COMPUTATION OF THE FIELD GRADIENT OF THE WRITE HEAD

The relative permeability of the recording region is 
considered to be 1 because that of the recording media is 
small compared to the high permeable head material. In this 

case, magnetic field in the gap region could be analyzed by 
Laplacian analysis. Magnetic field of the head by using 
conventional non-linear FEM is as following. From the 
Maxwell equation, 

                                                                                       (1) 

                                                                                       (2) 

                                                                                       (3) 
So, the system equation is as follows, 

                                                                                       (4) 

                                                                                       (5) 

                                                                                       (6) 

In this equation, susceptibility is not a constant so that (6) 
need to be solved iteratively.  

In the recording region, the relative permeability is 
considered to be 1. So, the following Laplacian analysis could 
be applied to compute magnetic field gradient around the 
recording region. 

                                                                                     (7) 

Fig. 1. The lattice to compute the Laplacian in gap region. 
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Fig. 2 (a) shows the contour plot of the magnetic potential 
around the recording region of the magnetic recording head 
by using conventional FEM. In the result, the mesh is not 
enough to compute magnetic field gradient. After the 
Laplacian calculation by using boundary interpolations, 
magnetic head field and field gradient could be obtained as in 
Fig. 2(b). 

(a) Conventional FEM                              (b) Laplacian Analysis 
Fig. 2. Contour plot of the magnetic potential around the recording region. 

III. WRITE HEAD FIELD AND FIELD GRADIENT

Fig. 3 shows the longitudinal and perpendicular head to 
computed field with field gradient in down track direction. 

Magnetic field and field gradient of the longitudinal and 
perpendicular write head is in Fig. 4 and Fig. 5, respectively. 
The width and length of the head foot is 80 nm x 80nm. 
Maximum field strength of the write head is about 7600 Oe in 
longitudinal head and 6900 Oe in Perpendicular head. 
Recording field in down track direction and cross track 
direction is obtained in Fig. 6. 

      (a) Longitudinal head                             (b) Perpendicular head 
Fig. 3. Magnetic Recording  head 

Fig. 4. Magnetic field strength of the longitudinal write head 

(a) Longitudinal field                    (b) Perpendicular field 
Fig. 5. Magnetic field strength of the perpendicular write head 

(a) Down track direction             (b) Cross track direction 
Fig. 6. Perpendicular head Field

IV. CONCLUSIONS

There are numerical difficulties to analyze and design of 
the recording head because the size of the head gap is very 
small compared to head size. In this paper, magnetic field and 
field gradient in the region of the recording around the head 
gap could be obtained by Laplacian analysis based on the 
conventional FEM results. Magnetic field and field gradient 
of the Longitudinal and Perpendicular head could be obtained 
in the analysis. In the size 80 nm x 80 nm, 7600 Oe and 6900 
Oe is achieved in the longitudinal and perpendicular head, 
respectively. Presented algorithm opens the possibility to 
perform the optimum design of the write head. 
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Closed-Form Approximation of Electromagnetic Green's Function for 
Layered Media with Variable Source Point
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Abstract � A novel method is presented for the development of an 
approximate closed-form electromagnetic Green's function for layered 
media, where the coordinates of the source are considered as 
independent variables. The analysis of its accuracy along with its 
numerical implementation and validation are presented also. 

Index Terms – Novel Methodologies, error estimation. 

I. INTRODUCTION

HIS papers concerns itself with the well-known problem 
of fast and efficient calculation of electromagnetic 

Green’s functions in planar layered media. Of particular 
interest is the availability of closed-form expressions that 
expedite iterative solution of electromagnetic integral 
equation-based solution of electromagnetic interference in 
high-density, multi-layered planar circuits.  
 Recently, a new technique for the development of a 
closed-form approximation of the Green’s function has been 
put forward [1]. This methodology leads to a semi-analytical 
approximation of the Green’s function in the form of a 
truncated series over poles of its spectrum. The analysis of 
this approximation reveals certain issues to be elaborated 
upon: 
i. It can be shown that the disturbance of the 

computational solution of the integral equation, which is due 
to the approximation of the Green’s function G, is minimized 
if G is approximated with respect to H1 rather than L2 norm. 
ii. The Green’s function is defined over the product of the 
scalar fields (R3 � R3). That is why, when approximating the 
Green’s function, it is essential to consider the coordinates of 
the source as independent variables. 
 In this paper, the methodology in [1] is modified in 
accordance with these two items. In Section II a brief 
account of the method of the semi-analytical approximation 
of the Green’s function is presented, and the proposed 
solution through the finite element method is discussed. 
Section III presents the accuracy analysis of the derived 
Green’s function. Finally, numerical results from its 
application are presented. 

II. SEMI-ANALYTICAL APPROXIMATION OF THE GREEN'S FUNCTION

 Assuming multi-layered dielectric planar media, the 
development of the electromagnetic Green’s function for 
both cases of the vertical and horizontal orientation of a 
dipole source involves the application of the Fourier-Bessel 
transform to reduce the problem to the solution of one-

dimensional scalar differential equations for the Green’s 
function spectrum [1],[4]. These are of the form, 
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Note, that for the case of reciprocal media the Green's 
function is symmetric,  

g
�
(x,x0) = g

�
(x0,x)                               (2) 

Thus, (1) is equivalent to its symmetric analog, 
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 In (1) (and (3)) the spectrum g
�
(x, x0) is considered as a 

function of two independent variables {x, x0}. We define the 
standard finite element space over the field R2 = R1�R1 and 
rewrite (1) in the weak form  

� �� �
��

�������

��

nnn dxgxxgdxdx ������
211

0 1 ,(4) 

where �n(x,x0) is the basis of the approximating space. 
Following standard finite element procedures we seek the 
approximation ),(ˆ 0xxg

�
of the spectral function g

�
(x, x0) as 

a linear combination of functions {�n(x,x0)}:

��

n
nn xxCxxg ),()(),(ˆ 00 ��

�
            (5) 

 Substitution of (5) into (4) leads to the system of 
algebraic equations that in matrix form can be written as 

� � FCMAM ��� )(~2
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                       (6) 

In (6) the matrix A
�
 stands for the stiffness matrix associated 

with the first term of the integrand in the left-hand side of the 
equation (4), M and 

�

M~  are mass matrices corresponding to 
the second and third terms in the integrand and F is 
associated with the right-hand side of (4). 
 Introducing the eigen value decomposition of the matrix 
S �

�

M~ -1(M-A
�
 ), 

S = U�U -1                                     (7) 
the following truncated expansion ),(ˆ 0xxg

�
 of the spectral 

function g
�
(x, x0) over its poles is obtained, 
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The inverse Fourier Bessel transform of (8) yields the desired 
closed-form approximation of the Green’s function, 

� �� �� �
(1)
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where  it is, �
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n
nmnm FMUR }~{1
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III. ACCURACY

 The accuracy of the approximation in (9) is quantified 
through the energy norm of the error 
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Here {Ci} are constants associated with the norm of the 
Bessel function J0.1 This result connects the accuracy of the 
approximation in (9) with that of the finite element 
approximation ),(ˆ 0xxg

�
 of the spectrum of the Green's 

function. It can be shown that g
�
(x, x0), as a function of the 

complex parameter �, is meromorphic with simple poles. 
Moreover, if the wavelength is larger than the characteristic 
size of the structure, all poles of this function are purely 
imaginary, located on only one of the semi-planes of the 
complex �-plane. Since as � tends to infinity the function 
g
�
(x, x0) goes to zero, g

�
(x, x0) can be represented in a form 

analogous to (8), 
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Rewriting (8) as 
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the following result is obtained [5]2
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where P is a constant that is independent of �; h is the 
maximum size of the finite element mesh; � is defined by the 
order of finite elements [5]; the eigen values {�m} are 
ordered,

�

����� ���� ......21 M .
Substitution of (13) into (10) and use of the fact that {�m} are 
purely imaginary, leads to the following result for the error 
estimate, 

1 Proof of the result (4.1) is given in the full version of the paper 
2 This estimation is derived in the full version of the paper. 

�
�

�

�

�

�
�

�

�

�

�	
 ��

�

�� Mm m

m
M

m m

m
H

CC
hOGG

�

�

�

�

2

0

2
22

1

~            (14) 

IV. NUMERICAL EXAMPLE

 The following example studies are for the case of the 
Green’s function of a vertical electric dipole inside a parallel-
plate waveguide with its perfectly conducting plates parallel 
to the yz-plane and with multiple planar dielectric interfaces. 
Magnitudes of normalized Green's functions versus x and z
for a given source position and on the plane of the source are 
depicted in Figs. 2 and 3.  

Fig.1 Two-layered structure (�1 =1; �2 = 3) 

Fig.3 Three-layered structure (�1 =1; �2 = 3, �3 =1) 
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AbstractThe paper introduces a new methodology using novel
electromechanical transducers for the strongly coupled finite element
(FE) simulation of micro electro mechanical systems (MEMS).

INTRODUCTION

The increasing functionality of the micro electro
mechanical systems (MEMS) leads to complex geometrical
configurations of MEMS, which requires new efficient finite 
element (FE) modeling techniques to solve coupled
electromechanical problems. Lumped models are no longer
applicable for the devices, where fringing electrostatic fields
are dominant, such as combdrives or electrostatic motors.
There have been several numerical methods proposed for the 
more accurate treatment of electromechanical systems: FE or 
boundary element methods using sequential physics coupling; 
strongly coupled but reduced order methods using fully
lumped or mechanically distributed but electrically lumped
1D, multi-dimensional or modal-space transducers. All these 
methods need some extra meshing or morphing, introduce
simplifying assumptions and may not be convenient to use.

This paper introduces and describes a distributed strongly 
coupled electromechanical transducer finite element with
internal meshing/morphing for full and accurate modeling the 
underlying physical phenomena. The new transducer can be 
used with both lumped and solid mechanical models. 

Fig. 1. Degrees of freedom and forces of the transducer FE

FORMULATION

For the sake of simplicity, the principle of the new
strongly coupled transducer is shown in 2D (see Fig. 1), but it 
could be applied to 3D. A transducer has a regular FE shape 
with electrical potential (VOLT) and structural displacement 
(UX and UY in 2D; UX, UY and UZ in 3D) degrees of
freedom. The reaction solutions are electrical charge (CHRG) 
and mechanical forces (FX and FY in 2D; FX, FY and FZ in 
3D). The support is meshed by regular mechanical FE; the air 
region between electrodes is meshed by transducers.

The total energy is the sum of electrostatic and elastic
energies. Mechanical elements store elastic energy, the
transducers store electrostatic energy. The energy change due 
to potential and displacement distribution changes produces
forces. The FE formulation of the transducer follows standard 
Ritz - Galerkin variational energy principles, which ensures
compatibility with regular mechanical FE. The electrostatic
energy, W, is

CvvTW
2

1
=

In (1), v is the vector of nodal voltages, superscript T
denotes transpose, and C is the element capacitance matrix.
The nodal electrostatic charge vector, q, can be obtained as

Cvq =
The capacitance matrix, C, depends on the element

geometry. The nodal electrostatic reaction force, f, can be
calculated by the virtual work principle:

u
f

d
dW

=

In (3), u is the vector of nodal displacements. At
equilibrium, forces between transducers and mechanical
elements balance each other. The mesh, including the air
region, deforms to reach force equilibrium. The mesh is
morphed, which means that no new nodes or elements are
created, but the displacements of the original nodes are
constantly updated according to the electro-structural force
equilibrium. This procedure is highly non-linear and huge
displacements are allowed for arbitrary uneven mesh.

UX, FX

UY, FY

VOLT,
CHRG

j

i

k

(1)

(2)

(3)
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EXAMPLE PROBLEMS

Fig. 2 shows a MEMS combdrive modeled using the new 
transducer element. The deforming comb is meshed by
regular mechanical FE. The air region is meshed by the
transducers. Contact and electrical features can be captured
by adding regular contact and electric elements to the model. 
The mesh is refined near the edges of comb fingers in order 
to accurately calculate fringing fields. After applying
electrical potential over the electrodes, electrostatic force
develops and deforms the structure. Details of the original
and deformed FE mesh are shown in Fig. 2. The potential
distribution over the deformed structure is depicted in Fig. 3. 
The theoretical and computed values of the driving
electrostatic force and deformations are within 1% of margin.

Fig. 2. Original and deformed mesh

Fig. 3. Potential on deformed combdrive

For a second example, the new transducer element is used 
to efficiently solve the pull-in/release hysteric beam-bending
problem with contact. This problem is difficult numerically
because of the bifurcation of static equilibrium, which may
lead to stability issues. The tip vertical displacement (in µm)
vs. potential drop is depicted in Fig. 4. Lacking analytical

solution, the new transducer is verified against methods using 
sequentially coupled procedure. The computed results show
good agreement whereas the solution with the new
transducers converges more robustly and quickly.
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Fig. 4. Hysteresis loop (pull-in/release)

In a third example, the transducer is applied for a transient 
analysis, such as simulation of the parallel plate drive with a 
current impulse load. The results agree very well with and
Runge – Kutta time integration (see Fig. 5). Note, that the
transducer works robustly with charge, voltage, force or
displacement load.
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Fig. 5. Transient response of the parallel-plate electrode

CONCLUSIONS

The paper introduced a strongly coupled distributed
electromechanical transducer that is compatible with regular 
solid and lumped FE. Its application range is as general as the 
sequentially coupled procedure, but converges more robustly 
with about an order of magnitude smaller number of iteration. 
The new transducers apply internal morphing: a new mesh is 
automatically created in the air domain, according to
mechanical deformations of the supporting electrodes. The
morphing allows the mesh density to be different across the
domain permitting accurate modeling of fringing effects.
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Magneto-mechanical strong coupling model and experiment for a giant 
magnetostrictive actuator  
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Abtract    Magneto-mechanical strong coupling model for a giant 
magnetostrictive actuator was founded, based on the energy functional 
theory. The input current dependence of output displacement for the 
actuator was calculated according the model by means of the finite 
element method. A comparison between the calculating result and 
experimental one for the actuator was carried out and it was found that 
they were in a good agreement. This indicates that the model can express 
the relation between the input current and the output displacement for 
the actuator.  

INTRODUCTION 

The rare earth-iron compounds are known to exhibit a 
large magnetostriction and there has been interest in the 
development of magneto-mechanical actuators and sensors. In 
order to design an actuator, it is necessary to know the 
relation between the input current and output displacement 
[1]. Dapino et al. [2] described a computed model of 
magnetostriction according to technical magnetization theory 
and analyzed the relation between the magnetostriction and 
the magnetization. Calkins et al [3] using the above model 
analyzed magnetostriction characteristic of the materials 
under AC magnetic field excitation. In this paper, the strong 
coupling model has been founded and the output 
displacement for the actuator has been calculated by means of 
the finite element method. 

MAGNETO-MECHANICAL STRONG COUPLING MODEL AND FINITE 
ELEMENT METHOD COMPUTATION 

Fig. 1 shows the schematic diagram for our 
manufacturing actuator. Axis-symmetric geometry is well 
adapted and an axis-symmetric reference (r, ,z) can be used. 
The computed domains of magnetic field and mechanical one 
are shown in Fig.2 and Fig.3, respectively. ur and uz are radial 
and axial displacement components, respectively. 

The total energy of the actuator is equal to the sum of 
magnetic energy, elastic energy, work of external forces, 
potential energy of current,  potential  energy  of   
magnetic boundary, magnetoelastic energy and  

Fig.1 schematic diagram of magnetostrictive actuator 
1 magnetic yoke, 2 coil, 3 magnetostrictive rod  4 air

Fig.2 The computed domain of the magnetic domain 1

(dash dot line strands for boundary)

Fig.3  The computed domain of the mechanical domain 2

magnetocrystalline anisotropy energy. If the magnetostrictive 
material is considered isotropy, the anisotropy energy is 
negligible. Introducing the magnetic vector potential A via B=
×A�and supposing A=0, the energy functional can be 

expressed as:
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where and are stress tensor and strain tensor, respectively. 

vff ,�  are the external surface force density and the 
external volume force density separately. u denotes 
displacement vector� 2�  is the boundary of mechanical 
domain 2. B and H denote the magnetic flux density and the 
magnetic field intensity, respectively. AJ ,  being the current 
density and the magnetic vector potential, respectively. 

TS¡¢ are the strain and stress of magnetostrictive rod 
induced by application magnetic field, respectively.  

Substituting the discrete magnetic vector potential A(r,z) 
and displacement components u(r,z) to equation (1), the 
variation problem of I is converted to a multivariant function 
extremum problem. Magnetic and mechanical unknown 
quantities are now solved simultaneously. The non-linearity is 
taken into account by an iterative method and the 
Newton-Raphson process.  
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2

CALCULATING AND EXPERIMENTAL RESULTS 

The above-mentioned procedure has been realized by a 
computer program. According to the experimental curve of 
the flux density and the magnetic field intensity for the giant 
magnetostrictive materials, the Young modulus and the 
Poisson’s ratio given in reference [4], the input current 
dependence of output displacement for the actuator was 
calculated and the calculating result is shown in Fig.4. The 
input current dependence of output displacement for the 
actuator was measured and the result is also shown in Fig.4. It 
is found that the experimental result is in a good agreement 
with calculating one. This indicates that the model can 
express the relation between the input current and the output  
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displacement for the actuator and it can be used to design an 
actuator. 
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Abstract— Numerical instability occurs in an analysis of

an electromagnetic and structural coupled problem or a

magnetically damped vibration by solving the matrix equa-

tions of structure and eddy current alternatively. In this

paper, the augmented staggered method is presented. Us-

ing the characteristic equation obtained from the recur-

rence relation of its time integration scheme, it is con-

firmed that this method for first mode is unconditionally

stable even if the magnetic field and the time increment

are large.

Introduction

In analysis of the electromagnetic and structural coupled
problem or the magnetically damped vibration, there are some
methods: one is the simultaneous method in which the simul-
taneous linear equations, which combined the equation of an
eddy current and a structure, are solved, and the others are
staggered methods in which these equations are solved alter-
natively. Although the latter methods are attractive in com-
puting cost rather than the former method, the results of the
latter methods diverge as a result of numerical instability un-
der some analysis conditions of magnetic fields and time in-
crements. Therefore, it is important to stabilize the staggered
methods.

As for the research of the numerical stability, T. Niho et al
have examined the stability of the staggered method evaluat-
ing the electromotive force with velocity of previous time step
using finite element in time [1]. T. Horie et al have examined
the stability of some staggered methods using the character-
istic equation obtained from the recurrence relation of time
integration scheme [2]. But, the stabilized staggered methods
for this coupled problem have not been proposed yet.

In the fluid-structure interaction analysis, K. C. Park et al
have shown that the staggered methods constructed by the re-
formulated governing equations are unconditionally stable [3].
Thus, in this paper, the staggered method applied the idea of
K. C. Park et al is proposed and its numerical stability is also
discussed.

Analysis method of the coupled problem

Modal Equations for the Coupled Problem

In the analysis of the electromagnetic and structural coupled
problem, combining the finite element equations of motion and
eddy current is needed. The equation of motion in the modal
coordinate {ξ} is expressed using the normal component {T}
of the current vector potential as�

ξ̈
�

+ [Ω] {ξ} = [Φ ] [C ] {T} + [Φ ] {f } (1)

where [C ] {T} is the electromagnetic force. Similarly, the
equation of eddy current in the modal coordinate {ζ} is also
expressed using the displacement {x} as�

ζ̇
�

+ [Γ] {ζ} = [Φ ] [C ] {ẋ} + [Φ ]
�
ḃ
�

(2)

where [C ] {ẋ} is the electromotive force. Matrix [Ω] in (1) is
the stiffness matrix diagonalized by the modal matrix [Φ ], and
[Γ] in (2) is the resistance matrix diagonalized by the modal
matrix of the eddy current [Φ ].

Conventional Staggered Methods

In the conventional staggered methods, Newmark’s β
method is applied to (1), and Crank-Nicolson method is ap-
plied to (2). To construct the staggered methods, the electro-
motive force in (2) is estimated using the velocity of previous
time step or the approximated velocity using forward differ-
ence. Iterations for each time step may be added [2].

Augmented Staggered Method

Based on the idea of K. C. Park et al [3], the equations of
the augmented staggered method are obtained. Solving (2)
about ζ, and substitution of it into (1) yields�

ξ̈
�

+ [Ω] {ξ} − [Φ ] [C ] [Φ ] [Γ]−1 [Φ ] [C ] [Φ ]
�

ξ̇
�

= − [Φ ] [C ] [Φ ] [Γ]−1
�

ζ̇
�

+ [Φ ] [C ] [Φ ] [Γ]−1 [Φ ]
�
ḃ
�

+ [Φ ] {f } .

(3)
In this paper, the staggered method combining (3) and (2) is
referred as the augmented staggered method.

Analysis of coupled problem

Analysis Model

Fig. 1 shows the analysis model which is a copper plate
with bending motion in a steady magnetic field B [4]. By
changing B and time increment ∆t , the numerical stability
is discussed. To obtain the deflection at the free end of the
plate, the first mode in vibration modes and all eddy current
modes are used for the analyses.

Analysis Results

Fig. 2 shows the deflection by the augmented staggered
method. The result of the staggered method using the previ-
ous time step velocity for electromotive force evaluation, which
is referred as the simple method below, and that of the simul-
taneous method are also shown for comparison. According to
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xB zB
100

Fig. 1. Schematic diagram of a bending plate in a steady magnetic
field B
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this figure, though the result of the simple method shows a
numerical instability, that of the augmented method is stable.

Fig. 3 is the results of the augmented staggered method
with large time increments. The critical time increment for
stable analysis of the staggered method with one iteration,
which is the stablest of all staggered methods have already
been examined, is 7.480 [msec] for B = 2.0 [T]. In the aug-
mented method, the numerical instability does not appear if
the time increments larger than 7.480 [msec] are used. Thus,
this method is stabler than the staggered method with one
iteration.

Stability of augmented staggered method

Stability Analysis Method

According to the previous section, the results of the aug-
mented staggered method are stable. Then, the stability of
this method is discussed using the recurrence relation of time
integration scheme. For each vibration mode and eddy current
mode, the recurrence relation is expressed as���
��

ẍ +∆t

ẋ +∆t

x +∆t

T +∆t

���
��

= [A]

���
��

ẍ
ẋ
x
T

���
��

+ L1f +∆t + L2Ḃ + ∆t . (4)

The stability of time integration scheme is determined by in-
vestigating the eigenvalue λ of the integration operator [A].
For |λ| > 1, results diverge by means of the numerical insta-
bility, while stable results are obtained for |λ| ≤ 1 [2].

Characteristics Equation

For a vibration mode and an eddy current mode, (1) and
(2) reduce to

ẍ +
k

m
x =

C

m
T (5)

and

Ṫ +
R

U
T =

C

U
ẋ − 1

U
ḃ (6)

with neglecting the external force. Solving (6) about T , and
substitution of it into (5) yields

ẍ +
k

m
x − C C

mR
ẋ = −C

m

U

R
Ṫ − C

mR
ḃ . (7)

Applying Crank-Nicolson method or backward difference to (6)
with substituting the velocity of previous time step into ẋ and
applying Newmark’s β method to (7), the recurrence relation
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Fig. 2. Deflection at the free end of the plate under the condition
of B = 2.0 [T] and ∆t = 4 [msec]
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Fig. 3. Deflection by the augmented staggered method under the
conditions of B = 2.0 [T] and different time increments
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Fig. 4. Change of spectral radius |λ| with time increment ∆t

of the augmented staggered method such as (4) is obtained.
From the recurrence relation, the characteristic equation is
obtained as

λ4 + c3λ
3 + c2λ

2 + c1λ + c0 = 0 (8)

where c3, c2, c1 and c0 are the function of , , e s ∆t and
θ. θ is a parameter: θ = 1/2 for Crank-Nicolson method and
θ = 1 for backward difference. Since the parameters , and

e s can be expressed as the function of young’s modulus E,
mass density ρ, electric conductivity κ, plate thickness h and
steady magnetic field B , the solution λ of (8) can be treated
as the function E, ρ, κ, h, B and ∆t [5].

Discussion of Stability

Fig. 4 shows the relationship between ∆t and |λ| of the
first mode for the coupled problem shown in Fig. 1 under the
condition of θ = 1/2 and B = 2.0 [T]. Since |λ| is smaller
than 1 for ∆t = 300 [msec], the numerical instability does not
occur as shown in Fig. 3. When ∆t → ∞ or B → ∞ in (8),
|λ| ≤ 1 is obtained whenever θ = 1 and θ = 1/2. Thus, it is
confirmed that the augmented staggered method for the first
mode is unconditionally stable even if the time increment and
the magnetic field are large.

Conclusion

In this paper, the augmented staggered method is presented
for the electromagnetic and structural coupled problem or the
magnetically damped vibration. Using the analysis results and
the characteristic equation obtained from the recurrence rela-
tion of its time integration scheme, it is confirmed that this
method about first mode is unconditionally stable even if the
magnetic field and the time increment are large.
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Abstract—The mechanical problem of flaking can appear at the

interface of a compressed but primary loose adjoined layer structure

during a coupled mechanical and electromagnetic field calculation. Two

different mechanical states, whereby either of them is generated from

the other continuously due to rising electromagnetic forces, are

included in the proposed computation due to the application of floating

potentials. The evaluation of the intermediate state between the primary

compressed structure and the occurring flaking effect between some

structural layers requires only the knowledge of a subset of the usually

total number of unknown degrees of freedom, which are obtained from

both the mechanical and the electromagnetic field results. Therefore,

the usage of static condensation enables us to solve each problem with a

reduced number of degrees of freedom in an efficient way.

I. INTRODUCTION

The main disadvantage within the solution process of a

coupled nonlinear electromagnetic and linear mechanical

problem is given due to the fact that the mechanical mesh has

in generally not the ability to break apart at specific locations

within the performed investigations. This basic necessity may

occur especially at the interface between different loose ad-

joined and compressed layers for some constellations of

acting electromagnetic forces.

The proposed numerical computation method for the

intermediate state requires only a subset of the degrees of

freedom from the complete solution of the coupled field

problem. Thus, the application of static condensation has the

main advantage to obtain only the necessary subset of un-

known degrees of freedom from the governing mechanical

and electromagnetic field equations.

II. THE USAGE OF FLOATING POTENTIALS AND STATIC

CONDENSATION

In order to take use of floating potentials in the mechanical

and the electromagnetic part of the coupled field calculation,

the necessary common continuos finite element mesh of our

problem must be divided into several sub domains as

exemplary shown in Fig.1.

All partitioned subdivisions have the ability to be

connected together at the boundaries by the usage of floating

potentials. Those potentials can only be applied to several

nodes which are laying on different subdivisions.

The coupled electromagnetic and mechanical finite element

calculation of the compressed adjoining layer structure is

performed with varying electrical loads but with an default

mechanical pre-load. The application of floating potentials

allows to take into account the mechanical dissociation of

parts inside a primarily compressed structure due to continuos

rising electromagnetic force magnitudes in an efficient way.

c
III,b

c
III,c

c
II,c

c
II,b

c
III,d

c
II,d

c
III,e

c
I,e

c
I,a

c
I

c
II,a

Fig. 1.  Connections of the mechanical floating potentials

representing the compressed structure.

A. Coupled electromechanical problem

The interconnection between the applied constant

mechanical pre-load and the electromagnetic forces of

arbitrary magnitude governs the common mechanical

behavior of the layer structure in case of an interrelated

structure according to [1,2]

c c a,c r,c

K U = F +F  . (1)

With the included mechanical floating potentials according to

the Fig.1,

m m m m m m

m

m m m m

u = u , u = u ,u = u ,

FP :=

u = u , u = u .

I,a II,a II,b III,b II,c III,c

II,d III,d I,i III,i

c c c c c c

c c c c

�

�

�

�
�

 (2)

the partitioning of (1) can be performed by means of

c c c a,c r,c

ii ie i i i

c c c a,c r,c

ei ee e e e

K K U F F

= +

K K U F F

� � � � � � � �

� � � � � � � �

	 
 	 
 	 
 	 


(3)

The applied mechanical pre-load

c m

i i
U : U�  , (4)

and the predetermined forces of electromagnetic origin [3]
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e

, , ,a,c

e

F on and

F :

0 else

II,a II,b I a II, f II g III h III,i
A , A , c , c , c , c c��

� �

��

(5)

additionally with the non-existing nodal electromagnetic

forces

a,c

i
F 0�  , (6)

and the vanishing reaction forces at all nodes with free

varying nodal displacement values

r,c

e

F 0�  , (7)

allow to determine the unknown mechanical nodal reaction

force values from

� �� � � �
-1 -1

c c c c c c c a,c r,c

ii ie ee ei i ie ee e i
K -K K K U +K K F = F  . (8)

The mechanical solution of the coupled system (8) is only

valid while no flaking occurs within the structure.

Flaking will demand other mechanical floating potentials in

order to describe the mechanical behavior sufficiently.

Furthermore, a primary performed mechanical computation

of a reference distribution

� �� �
-1

m m m m m r,m

ii ie ee ei i i
K -K K K U = F (9)

without any current excitation is necessary.

Afterwards, the computation of the intermediate state

between the compressed structure and the case of flaking can

be established with (9) and (10) as

r,c r,m

i i
F + F > 0 . (10)

The limiting condition (10) enables us to determine the

minimal necessary electromagnetic nodal force magnitudes,

which may cause flaking within the compressed structure.

From (9) and (10), we obtain with the identity 
c m

K = K  the

condition

� �� �
-1

a,c m m m m m

e i ei ee ie ii
F > 2 U K -K K K . (11)

The applied electromagnetic nodal force values are used for

the necessary comparison (11) with the obtained mechanical

quantities in an efficient way.

III. MECHANICAL STRESS DISTRIBUTIONS OBTAINED FROM

THE PROPOSED COMPUTATION

The mechanical behavior of the investigated structure in

Fig.2 mainly depends on the mechanical pre-load and the

impressed electrical current [4,5].

The mechanical pre-load prevents the effect of flaking

within vanishing electrical current magnitudes. But there

exists the possibility to cause a loosening of the slot wedge

due to continuos rising electromagnetic forces inside the

conductors of both bars.

c
I,e 
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c
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c
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c
I,g

c
I,h

c
I,i

c
I

Fig. 2.  Investigated mechanical Roebel bar structure inside a single slot.

For an applied slot wedge pre-load and the case of rated

electrical current of 1pu, we receive a compressive stress

situation inside the slot for the investigated assembly of

Roebel bar composites.

Contrarily electrical current magnitudes up to 15pu will

lead to flaking with the same assembly. The flaking effect can

be identified in Fig.3 due to vanishing mechanical stress

values between both adjoining layers at x=0 along the slot

width.
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Fig. 3.  Mechanical stress courses (�) for inphase currents of 1pu and 15pu

depicted along the bar envelope (en) and copper regions (co) versus

slot height starting from the slot wedge up to the slot bottom.
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Abstract – This paper presents a method for computing the deforma-
tion of ferromagnetic material due to magnetic forces and magnetostric-
tion by using the finite element method. Also the experimental determina-
tion of the magnetoelastic properties is discussed.

INTRODUCTION

In previous papers, a general method for modelling mag-
netic forces and magnetostriction in ferromagnetic material has
been presented [1, 2].

The present paper deals with the computation of the defor-
mation due to magnetic forces and magnetostriction by using
the finite element method. Furthermore, the experimental de-
termination of the magnetoelastic characteristics used in the
numerical model, is discussed.

MAGNETIC FORCES AND MAGNETOSTRICTION

For the sake of clarity, the magnetic and magnetoelastic
behaviour of the material is assumed to be reversible.

Mechanical and Magnetic Equivalent Stress Tensors

In deformable magnetized material, the free energy density
depends on both the magnetization M and the deformation,
represented by the strain tensor ε. By assuming a particular
form of this free energy density, the magnetic and mechanical
phenomena may be separated by defining a mechanical equiva-
lent stress tensor τ ∗ on the one hand and a magnetic equivalent
stress tensor T ∗

m on the other hand.
The mechanical equivalent stress tensor τ ∗ is related to the

strain tensor according to Hooke’s law :

τ ∗ = ε : E (1)

where E is the elasticity tensor.
The magnetic equivalent stress tensor T ∗

m represents mag-
netic forces and magnetostriction and is given by:

T ∗
m = T c + αc − 1

2
e · cc (2)

It consists of three parts:

• The tensor T c is given by an analytical expression of the
magnetic quantities:

T c = BH − µ0

2
H2I (3)

and determines the total force acting on a magnetized body.

• The symmetric tensor αc is given by a constitutive law in
terms of the magnetization M and the strain tensor ε:

αc = αc(M , ε) (4)

and represents the magnetoelastic (magnetostrictive) be-
haviour of the material.

• The tensor − 1
2e · cc represents the couple density cc:

cc = e : T c = µ0M × H (5)

where e is the permutation tensor.

On the basis of this tensor we can define the magnetic equiv-
alent volume force density f∗

m as follows:

f∗
m = ∇ · T ∗

m (6)

which displays a singularity at material boundaries (material–
air interfaces), i.e. a magnetic equivalent surface traction t∗m
given by:

t∗m =
µ0

2
M2

nn − n ·
(

αc − 1
2
e · cc

)
(7)

where n is the outward normal unit vector of the material bound-
ary, Mn is the normal component of the magnetization M and
the magnetic quantities are evaluated just inside the material.

The equations of motion can then be written in the follow-
ing form:

�a = f∗
m + fex + ∇ · τ ∗ inside the material (8)

n · τ ∗ = t∗m + tex on material boundaries (9)

where �, a, fex and tex are the mass density, the acceleration,
and possible external volume forces (such as gravity) and ex-
ternal surface tractions respectively.
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The deformation can thus be calculated by using the stan-
dard equations of elasticity, i.e. the equations of motion (8)-(9)
in terms of the mechanical equivalent stress tensor τ ∗, which
satisfies Hooke’s law (1), and where the applied forces con-
sist of the equivalent magnetic forces f∗

m (6) inside the mate-
rial, the equivalent magnetic surface traction t∗m (7) on material
boundaries, and the external forces fex and tex.

Reciprocity

Due to the reciprocity, the deformation will affect the mag-
netic behaviour. It can be shown that the constitutive law for
H , corresponding with the magnetic equivalent stress tensor
T ∗

m (2), is given by

H(M) = H̃(M) +
1
µ0

dαc

dM
: ε (10)

where ˜ indicates the constitutive law in the undeformed state.

NUMERICAL IMPLEMENTATION

The 2D and 3D finite element method are used for comput-
ing the magnetic field and the ensuing deformation of electro-
magnetic devices. As the mechanical and magnetic phenomena
are coupled (e.g. due to the reciprocity), an iterative procedure
consisting of consecutive field, force and deformation compu-
tations, has been adopted (weak coupling).

For the numerical implementation, the tensor αc is written
in the following form:

αc = −α1µ0MM − α2µ0M
2I (11)

where α1 and α2 are dimensionless parameters which may de-
pend on both the magnetization and the deformation (or me-
chanical stress) and which have to be determined experimen-
tally.

Both static and dynamic computations are carried out. Fig. 1
shows some results of a 2D field, force and deformation com-
putation in an induction motor stator. Other applications, such
as 3D FE computations of the magnetic equivalent force distri-
bution and the ensuing vibrations of transformer cores, will be
presented in the extended paper.

(a) (b)

Fig. 1: The stator of an induction motor: (a) magnetic flux and magnetic equiv-

alent force distribution (nodal forces representing f∗
m and t∗m); (b) deforma-

tion (strongly magnified)

EXPERIMENTAL DETERMINATION OF MAGNETOELASTIC PROPERTIES

For the determination of the constitutive law αc (M , ε),
i.e. the determination of α1 (M , ε) and α2 (M , ε) when the
expression (11) is used, accurate strain measurements are re-
quired. Therefore, several measurement techniques (e.g. strain
gauges, optical techniques) and geometries of the samples and
the excitation are investigated. For instance, for isotropic ma-
terial, a ring core with strain gauges can be used. In that case
the magnetic equivalent force distribution is (approximately)
reduced to a surface traction t∗m given by:

t∗m ≈ −n · αc (12)

which is illustrated in Fig. 2 for a ring core with outer and
inner diameter of 188 mm and 158 mm respectively. As the
magnetization and thus the magnetostriction is approximately
constant in this core, the tensor αc can be easily computed on
the basis of the measured strain ε according to:

αc = −E : ε (13)

Fig. 2: Magnetic flux and magnetic equivalent force distribution (surface trac-

tion t∗m) in a ring core
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Abstract----The Inverse Magnetostriction Effect is considered in the 
magnetoelastic-coupled analysis. From the magnetic field side, it reflects 
the changes of the ferromagnetic permeability at different stress levels.  
From the mechanical side, an additional force due to the inverse 
magnetostriction effect should be added to the magnetic forces. Virtual 
Work principle is adopted for the force calculation. It indicates that the 
magnetic force density distributes everywhere in the ferromagnetic 
material due to the inverse magnetostriction effect. A PM surface mounted 
motor is used for the implementation. The magnetic forces acted on the 
stator iron and the corresponding deformations of the stator iron with and 
without magnetostriction effects are compared.   

INTRODUCTION 

     Study of the effects of magnetostriction on electrical 
machines is one of the topics in magnetoelastic-coupled 
analysis. Related papers published present different way of 
dealing with magnetostriction effects. In [1], the author 
deduced the magnetic force due to the magnetostriction origin 
and implemented it to coupled field analysis. 
     In this paper, we are focusing on the effects of the inverse 
magnetostriction phenomenon in electric machine numerical 
models. First, the method of measuring the magnetization 
property at various stress levels is presented. Second, a brief 
review of the formulation for the magnetoelastic-coupled 
analysis including magnetostriction effects is given. Third, the 
implementation on a PM surface-mounted motor is performed 
and some interesting conclusions are obtained..  

INVERSE MAGNETOSTRICTION EFFECT MEASUREMENT 

     The structure of the sample, which is made of one piece of 
electrical steel sheet M_19, is shown in Fig. 1. At the two sides 
of the sample, pulling forces are applied so as to obtain the 
required stress inside the sample. 

Applied 
force

Applied 
force

B coil 

Path 

Hall probe 

A

B

Fig. 1 Sample and measure method 

     The measurement is performed according to ASTM 
Standard V3.04 A341. B-coils were used for measuring the 
flux density inside the sample. As the sample is one sheet of 

electrical steel, it is impossible to put any sensor inside it for 
field strength measuring. Instead, hall probes are put next to it 
at different distances along the line perpendicular to the sample 
to measure the field strength outside the sample. Extrapolation 
is used to determine the field strength at any point inside the 
sample.  

FORMULATION REVIEW 

     Virtual work method is used for the force calculation of the 
magneto-mechanical coupled problems. The element 
contributions to the force are as follows: 

� �
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     Where eR is the element region, G is the local Jacobian 
derivatives matrix of the element and )det(G is the determinate 
of G . u and v are the local coordinate system adopted for force 
evaluation by using virtual work principle. B  is the flux density 
and H  is the field strength. 
        The first two terms are reluctance forces and the third term 
is the magnetic force due to magnetostriction origin. It can be 
expanded as: 
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     Where E  is the Young’s modulus; � is the Poisson’s ratio. 
     In eq. (2), the variation of the permeability with mechanical 
stress is taken into consideration in this term. Compared with 
the first two terms of eq. (1), it can be found that the 
derivatives of the nodal coordinates are not required for the 
third term force calculation. Therefore, besides the nearest air 
layer to the ferromagnetic region, its internal elements also give 
contributions to the total magnetic force. In other words, this 
force density distributes everywhere in the ferromagnetic 
region due to the inverse magnetostriction effect. 

IMPLEMENTATION AND CONCLUSION 

     Magnetostrictive effects are taken into account in both 
magnetic field and mechanical field analysis. It is included in 
field equations by assuming the ferromagnetic material is 
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inhomogeneous. That is, it is composed of different magnetic 
materials with their corresponding magnetization properties, as 
shown in Fig. 2. First using the initial magnetization property, 
perform nonlinear magneto-mechanical FEM analysis to obtain 
the stress of each element. According the element stress value, 
determine which BH curve should be used for the next step for 
material property iteration. A nonlinear magneto-mechanical 
FEM analysis is performed again till the stored energy of the 
iron region stops changing.  
     For the mechanical field analysis, the third term force, in eq. 
(1), is calculated based on eq. (2). The calculation of �� �� is
given in eq. (3) and explained in Fig. 2. 

�

B

1�i�

i�

e�

e�

i�

B e

1�i�

Fig. 2.   Derivative of element permeability to stress 

� � � �11 ��

����� ieieee ������                             (3) 

     The two curves are the reluctivity versus flux density 
properties at stress level i�  and 1�i� . Where, e� and e�  are 
element permeability and the stress is obtained by one step of 
coupled FEM analysis.  
     A six-pole surface mounted PM motor is used as an 
example. Its stator is made of non-oriented ferromagnetic 
material. Since non-oriented ferromagnetic materials also 
exhibits anisotropic magnetization properties under rotating 
magnetic fields [3], an anisotropic reluctivity tensor is 
included. In order to show the effects of magnetostriction, both 
the 2D coupled analysis with and without magnetostriction 
effects are performed. Below are part results. 
     Fig. 3 shows the deformed stator at the same rotor position 
and under same excitation conditions. It can be seen that the 
symmetric deformation becomes unsymmetrical if the 
magnetostriction effects is considered.  

       without magnetostriction                              with magnetostriction 

Fig. 3 Stator deformation 
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Fig. 4 Force density at teeth shank part with magnetostriction effects 
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Fig. 5 Comparison of back iron displacement with and without 
magnetostriction effects 

     The virtual work principle is used for the force calculation. 
The reluctance forces at the teeth shank only distribute on the 
teeth boundary. And usually are so small and can be neglected. 
Fig. 4 shows that the magnetic force due to magnetostriction 
origin is significant. In the back iron, only the force density 
resulted by the magnetostriction effects exists. From fig. 5, it 
can be seen that magnetostriction effects cause more 
displacements and are not symmetric compared with those 
without considering magnetostriction effects.   
     When taking into account the magnetostriction effects, the 
magnetic force density distributes everywhere in the 
ferromagnetic region. Its value depends on the flux density and 
reluctivity property. The higher the flux density, the higher the 
force density due to the magnetostriction origin. Anisotropic 
reluctivity cause asymmetric magnetic force distribution.                

REFERENCES 

[1] O. A. Mohammed, “Coupled magnetoelastic finite element formulation 
including anisotropic reluctivity tensor and magnetostriction effects for 
machinery applications,” IEEE Transactions on Magnetics, vol. 37, No. 5, 
pp. 3388-3392, September 2001.

[2] J. L. Coulomb,  “A Methodology for the determination of global 
electromechanical quantities from finite element analysis and its 
application to the evaluation of magnetic forces, torque and stiffness,” 
IEEE Transactions on Magnetics, vol. 19, No.6, pp.2514-2519, 
November 1983.

[3] M. Enokizono, T. Todaka, and S. Kanao, “Two-dimensional magnetic 
properties of silicon steel sheet subjected to a rotating field,” IEEE 
Transactions on Magnetics, vol. 29, no. 6, pp.3550-3552, November 
1993.

53Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Modelling of Magneto-Mechanical Phenomena by Using Shell Elements
M. Hadjali, M. Besbes and F. Bouillault 
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Abstract This paper deals with the modelling of the magneto-
mechanical phenomena for a ferromagnetic plate having weak
thickness. In order to avoid problems in the mesh operation, we use shell 
elements. With such elements, one computes magnetic field, magnetic
forces and deformations. In this work, we explain the different 
formulations and the main results obtained of the studied example.

The variational formulation, in terms of magnetic scalar
potential and associated to the problem as shown in Fig. 2, is
expressed, for the side of 1, as follows [2]:

06

3
212

1111
1

dddgradgrad

dgradgraddgradgradw

iisis

sisi
  (1) 

INTRODUCTION

The finite element modelling of weak thickness domain
needs a very fine mesh. This implies an important computing
time on one hand, and on another hand leads to an ill-
conditioned algebraic system. This problem is met in many
applications using thin film materials (particularly in case of
micro-systems), or in eddy current calculation for conducting
plates of weak thickness (for non-destructive testing), or
more in electromagnetic systems with a weak air-gap. The
use  of shell elements allows to set free of the fine mesh of 
thin weakness domains. It consists to use degenerated
elements of quadrangle (in 2D case) and prisms or
hexahedron (in 3D case) to lead in each configuration to line 
elements and respectively triangular or quadrangular
elements [1, 2]. The main of this work is to perform the
different formulations to compute magnetic fields and forces 
in the static case in order to determine the deformations of a
ferromagnetic plate. The aimed application is the study of 
magneto-elastic behaviour of a magnetostrictive plate used in
a micro-actuator.

where w are shape functions of tetrahedral elements,  are 
shape functions of triangular elements,  is a thin
ferromagnetic domain, 1 and 2 represent the neighbour
regions.

FIELD CALCULATION AND FINITE ELEMENT FORMULATION

According to the physical nature of the thin domain and
according to magnitude to be determined, we can use 
different kinds of  shell elements. In this work, we are
interested to use shell elements with potential jump. In this
case, the potential is not constant along the thickness of the
thin domain and the unknown variables are doubled in each 
node of a shell element. We have chosen a formulation based
on a magnetic scalar potential  because it yields to reduce
number of freedom degree compared to a formulation based
on a magnetic vector potential. For this study, we consider, in
the 3D case, a surface element such as a triangular element
and, in the 2D case, a line element  with a potential jump (as
shown in Fig. 1). The nodes are doubled but geometrically
overcame. The shape functions are analytically integrated
along the weakness.

Fig. 1. 2D and 3D shell elements.

Fig. 2. Different domains of study.

The force calculation is based on the use of virtual work 
principle. This method presents a great advantage to be
directly applicable in a finite element modelling. The forces 
are computed in both volume elements and shell ones. We
use so an approach based on the local application of the
virtual work principle which can be described by the
variation of co-energy where the magnetic field circulation is
held constant along an edge. This is identical to the variation
of the magnetic scalar potential between two nodes of a given
edge. In the linear case, the elementary force (relative to the
contribution of one element) at node k of element e, is
described by [3]:

eekuee
k SF T2

1 (2)

where S is the magnetic stiffness matrix composed by the
different terms of (1). Let define : 

dgradgradS sTs1 with  = 3
1 or 6

1 ,

dS T
2 with  = 1 ,

their derivatives versus displacement u, when using first
order elements, are equal to: 

1
1

ˆ
1

1 )(ˆ).( SjjdgradjjgradS usTuTsu ,

and 2
1

2 )( SjjS uu ,

with ˆ the reference element, j the jacobian matrix of the 
shell element and |j| its determinant.

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



The mechanical problem is solved by using shell or plate
elements which have as degree of freedom, associated to each
node, displacements at each direction. In this case, the strain 
tensor is decomposed into shearing tensor and twisting one. 

STUDIED EXAMPLE
The proposed example is composed of a magnetic circuit

with a permanent magnet, an iron yoke and a ferromagnetic
plate which has a constant permeability  and a weak 
thickness. This latter is imbedded on edges and will be
deformed by the action of magnetic forces. 

Fig. 3. Forth geometry of the example and its mesh.

The plot of iso-potentials is presented in figure 4 for a 
plate with thickness of 0.1mm. One can observe that iso-
potentials on the permanent magnet are perpendicular to the
magnetisation vector. The ferromagnetic plate canalises the 
majority of the lines of magnetic field. Consequently, the
forces are practically located on one side of the plate as
shown in Fig. 5. The plate mesh has been refined lightly on 
the part of the plate towards the magnetic circuit (yoke,
permanent magnet) in order to reduce errors when computing
magnetic forces. 

2D case 3D case 

Fig. 4. Isovalue of magnetic scalar potential.

We notice that magnetic forces are important neighbour
the air-gap between the plate and the iron yoke. When we 
compare the forces on the iron and the plate, we remark that
these forces are comparable. The plate is completely
imbedded on its sides, so the studied domain is limited to the
forth of the plate. According to the magnetic force

distribution, the mechanical boundary conditions are as 
follows:

Fig. 5. Magnetic force distribution on the plate and the BC for mechanical
problem.

The computed nodal forces are directly integrated in the
mechanical computation by using shell or plate elements. The
resulted strain is presented in Fig. 6. The calculation is
realised with the forth of the plate but the result is rebuilt in
the all domain by symmetry operation.

Fig. 6. Strain of the ferromagnetic plate.

CONCLUSION
In this paper, we have presented the interest of the shell

elements in modelling of magnetic and deformable thin
domain. In fact, these elements allows to set free of a hard
step to perform the mesh. They make easy the parametric
study and optimisation when the thickness is considered as a 
tested parameter, without remesh the domain.  We have 
worked particularly in the magnetostatic case with a 
formulation in term of magnetic scalar potential. Our aim is 
to develop the theoretical aspect for the formulation of the 
problem associated to the determination of the magnetic field
in thin domain, the produced forces and the induced
deformations. The presented example illustrates the
methodology of studying the coupled magneto-mechanical
phenomena of structures with weak thickness.
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Electromagnetic force density
in a ferromagnetic material

FranÁois Henrotte, Hans Vande Sande, Geoffrey DeliÈge, Kay Hameyer

Abstract— A very simple but realistic model for ferromagnetic
materials is proposed under the form of a functional to min-
imise. This functional is then used to derive the corresponding
expression of the Maxwell stress tensor.

I. INTRODUCTION

IN a recent paper, a systematic derivation of the elec-
tromagnetic (EM) force density from the expression of

the EM energy density was presented by the authors. It
was applied to air (no magnetisation) and permanent magnet
materials (magnetisation is independent of the magnetic Ýeld).
In this paper, it is intended to make one step further and to
apply the same procedure to saturable ferromagnetic materials
(reversible case).

As the forces are directly derived from the knowledge of the
EM energy density, the problem is simply to Ýnd a satisfactory
expression of the latter. The classical expression is

ρΨ(�b, ε) =
∫ �b

0

�h(�b, ε) · d�b, (1)

which has the nice formal property that

δρΨ
∣∣
δε=0

= �h · δ�b. (2)

The idea is then to collate measurements of �h(�b, ε) and to
integrate them. This approach has however the following
drawbacks.

Firstly, it does not rely on a real material model. The
expression of the EM energy density is on the contrary induced
from empirical constitutive laws, i.e. which are obtained from
measurements. But measurements gives only a partial view
on the complexity of the electromechanical behaviour of a
real material, because of the limited number of measure-
ments and the unavoidable experimental errors. Moreover,
only global quantities (magnetic Ðuxes, displacements) are
measured, whereas the constitutives laws are in terms of the
corresponding local quantities (�b and ε), and the required
transposition from ëglobalí to ëlocalí is not trivial in practice
and full of pitfalls and simplifying assumptions.

Secondly, the integral with vector-valued bounds in (1)
requires a mathematical deÝnition in order to be useable. A
suitable deÝnition is

ρΨ(�b, ε) =
∫ t

0

�h(�bt(u), εt(u)) · �̇bt(u) du, (3)

The authors are with the Katholieke Universiteit Leuven, Dept ESAT /
ELECTA, Leuven, Belgium (email: francois.henrotte@esat.kuleuven.ac.be)

This text presents research results of the Belgian programme on Interuni-
versity Poles of Attraction initiated by the Belgian State, Prime Ministerís
OfÝce, Science Policy Programming.

where�bt(t) and εt(t) represent pathes starting from a reference
state and verifying �bt(t) = �b and εt(t) = ε. The energy density
is properly deÝned if the integral in (3) is independent of the
chosen pathes, which gives integrability conditions that are not
easy to fulÝll in practice.

II. FERROMAGNETIC MATERIAL

For these reasons, a completely different approach is pro-
posed in this paper. Instead of basing the material description
upon constitutive laws, as is usually done, we shall deÝne a
simpliÝed but realistic model for the ferromagnetic materials.

Ferromagnetic materials are substances with permanent
atomic magnetic moments that are coupled by long-range
exchange forces of quantum-mechanical origin. Therefore,
they line up with each other and create an intense magnetic
moment density. On the other hand, in order to minimize the
overall magnetic energy, a macroscopic ferromagnetic sample
tends to break up into several domains, called Weiss domains.
The magnetic moment density is homogeneous within each
domain but its orientation varies from one domain to the next,
so that the total magnetic moment of the sample vanishes if no
external Ýeld is applied. Because of anisotropy and provided
the material is not highly saturated, the magnetic moments of
the domains are preferably oriented along one of the easy-axes
of magnetisation of the crystal. These are the mechanisms we
are going to implement in our material model.

r
�

s
�

t
�

B

C

A

O

EM

p

Fig. 1. Euclidean placement of a small piecce of ferromagnetic material.

A small piece of ferromagnetic material M is considered
at an intermediary scale between the microscopic structure of
the ferromagnet (Weiss domains, . . . ) and the characteristic
macroscopic dimensions of the system. The placement map p
determines in the euclidean space E a paralelepiped region
p(M) spanned by the vectors �r, �s and �t. The volume of
p(M) is V = (�r × �s) · �t. Let N be the number of magnetic
moments in M and M0 their magnitude. These are constant
numbers. Let us assume a 2D monocrystal, with two easy-
axes of magnetisation, respectively aligned with the α and β
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directions. There are then 4 possible states for each atomic
moment, i.e. ±α and ±β. Let a, b, c and d be their relative
populations, with a, b, c, d ∈ [0, 1] and a+ b+ c+ d = 1. This
has the pictorial representations showed at Fig. 2.

Fig. 2. A simple ferromagnetic materialmodel.

In order to calculate forces, one needs to express the
induction Ýeld �b in p(M) ⊂ E explicitly as a function of
the Ðuxes across the facets of M . Since the induction Ýeld is
a differential form of 2d degree, one has in 2D (See [3], [4])

�b(φi, �rj) = φOBC
�r

V
+ φOCA

�s

V
. (4)

with φOBC and φOCA the Ðuxes across the facet OBC et
OCA in Fig 1. On the other hand, if the ρ

�M is assumed to
be a differential form of 1st degree, (See [4] for a discussion
of this assumption), it is represented in E by

ρ
�M(�rj , ak) = NM0

[
(a − c)

�s × �t

V
+ (b − d)

�t × �r

V

]
. (5)

Let us now deÝne the energy density of our ferromagnetic
material, subjected to an induction Ýeld �b, by

ρΨ =
|�b|2
2µ0

−�b · ρ �M + C
(NM0ξ)2

2
(6)

with �b given by (4), ρ
�M given by (5) and

ξ2 = (b − a)2 + (c − b)2 + (d − c)2 + (a − d)2. (7)

The Ýrst two terms in (6) are classical. The third one is a
tentative expression for the internal energy of the sample.
It is interpreted as follows. As shown at Fig. 2, the four
domains can be considered as forming a magnetic circuit. Each
imbalance between two successive moments in that circuit
creates a kind of leakage Ýeld, which generates magnetostatic
energy in the surroundings. This assumption is of course
somewhat rudimentary, but we shall see it gives already very
important and nicely general results.

III. MATERIAL MODEL

The material model we are seeking for is given by the
minimisation of the energy density functional (6). In order
to get rid of the constraint a + b + c + d = 1, independent
internal variables ζ, η, θ ∈ [0, 1] are deÝned, such that a = ζ η,
b = (1−ζ) θ, c = ζ (1−η) and d = (1−ζ) (1−θ). Equation
(7) becomes

ξ2 = 2− 4ζ2η(1 − η) − 4(1 − ζ)2θ(1 − θ) − 6ζ(1 − ζ). (8)

Using (8), the energy density functional ρΨ can be written in
terms of the independent thermodynamic variables φ i, �rj and
ζk. The material model is now deÝned by the minimisation

ζ�
k (φi, �rj) ≡ min

ζk∈[0,1]
ρΨ(φi, �rj , ζk) (9)

M
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Fig. 3. Magnetisation curves as a function of the orientation of the magnetic
Ýeld with respect to �r.

with respect to the internal variables ζk.
This simple model of a ferromagnetic material, which

involves only one free parameter C, is already able to represent
saturation and a certain kind of anisotropy, as shown at Fig. 3.
In this case, the value of C is related with the susceptibility of
the material, i.e. the slope at zero-Ýeld of the magnetisation
curve. In general, the value of the free parameters are de-
termined by matching the constitutive laws derived from the
material model with measurements.

IV. ELECTROMAGNETIC FORCES

The advantage of having a real material model is that it
directly gives an expression for the energy density, from which
forces are directly derived by

δ
{
V ρΨ (φi, �rj , ζ

�
k (φi, �rj))

}∣∣
δφ=0

= V �∇�u : σ (10)

where σ is by deÝnition the Maxwell stress tensor and
�∇�u(�rj , δ�rj) is the gradient of the displacement Ýeld obtained
by perturbing the �rj vectors (virtual displacement). The total
variation of energy is

δ
{
V ρΨ

}
= δV ρΨ + V

∂ρΨ

∂φi
δφi + V

∂ρΨ

∂�rj
δ�rj + V

∂ρΨ

∂ζk
δζk.

(11)
The second term at the r.h.s. plays no role for forces because
δφ = 0 in (10). The fourth term does not play a role either,
because (9) implies that either ∂ρΨ

∂ζk = 0 or δζk = 0 at
equilibrium. The only thing that remains to do now, is to
factorize the two remaining terms into the form of the r.h.s.
of (10). This will be done in the full paper.
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Comparison of 2D and 3D Transient FEM
Calculations of a Skewed Induction Machine
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Abstract— The Finite-Element Method (FEM) allows for the
calculation of the magnetic field distribution and the torque in
electrical machines. Transient vector formulations are utilized to
compute the torque of a skewed induction machine. In the two-
dimensional approach three slices are calculated to take the skew
of the rotor into account. Both approaches, the two-dimensional
(2D) and the three-dimensional (3D), consider the movement of
the rotor geometry of the machine and calculate the currents in
the rotor bars. The 2D calculation is preferred because of its time
efficiency. The aim of the presented paper is to examine, wether
the two-dimensional calculation provides sufficiently accurate re-
sults in comparison to the expensive 3D computation.

Index Terms—Transient FEM Computation, Skewed Induction
Machine, Induced Currents, Rotor Movement, Comparison 2D -
3D

I. INTRODUCTION

Induction machines are used for all kinds of actuation in in-
dustry and are therefore also matter of research. A main prob-
lem of all electrical machines is the noise evaluation. To predict
the noise radiation of an electrical drive, the magnetic force and
the torque of the machine, both exiting the vibrations, have to
be calculated exactly.

Due to higher harmonics in the noise evaluation a transient
calculation has to be conducted with a high time resolution. To
take the skew of the rotor into account, a 3D approach has to be
employed. 3D FEM calculations are very expensive concerning
calculation time and memory effort. Therefore, a sufficiently
exact 2D FEM approach has to be preferred.

Corresponding to the 2D approach it is not possible to take
the skew of the machine directly into account. Hence, three
slices of the machine are calculated. For the slice positioned in
the middle of the machine, a transient computation is applied in
which the currents in the rotor bars are determined. With these
currents, two static FEM calculations are performed on the two
remaining slices. In comparison with the middle slice of the
machine, the rotor in the other slices is turned according to the
skew of the machine.

For the interpretation of the results, the torque of the three-
dimensional and the two-dimensional calculations are com-
pared. To evaluate the torque of the 2D calculations the results
of the three slices are superposed.

In order to calculate the machine in 2D and 3D numerical
tools for the design process have been developed. In this paper
the 2D and the 3D approaches are outlined, the FEM models
are described and the results of the calculations are compared.

II. THEORY OF THE TRANSIENT SOLVERS

The applied solvers are parts of an object-oriented solver
package [1]. They apply a transient FEM formulation taking
the rotational movement into account.

The node-based 2D �A-approach applies the magnetic vec-
tor potential in all regions. The following equation (already in
Galerkin formulation) is solved in all regions Γ [2]:∫

Γ

(
∇·αi · ν · ∇·Az(t) + αi · σ ∂

∂t
Az(t)

)
dΓ

=
∫

Γ

(αi · Jz0(t)) dΓ . (1)

The material parameters ν and σ represent the non-linear reluc-
tivity and the linear conductivity, respectively. αi defines the
shape function of an element (in this solver triangles). Jz0(t)
describes the z-component of the given coil current density
�J0(t). Note, that �J0(t) > �0 only applies for σ = 0.

The edge-based 3D �A-approach applies also the magnetic
vector potential �A in all regions Ω. The following equation
(again in Galerkin formulation) is solved [3]:∫

Ω

(
∇× �αi · ν ∇× �A(t) + αi · σ ∂

∂t
�A(t)

)
dΩ =∫

Ω

(
�αi · �J0(t)

)
dΩ . (2)

�αi defines the shape function of a 3D edge element (in this
solver tetrahedra).

The time-stepping algorithm interpolates the time-dependent
variables linearly:

�A(t) = τ · �An+1 + (1 − τ) �An ditto for �J0;
∂

∂t
�A(t) =

1
∆t

( �An+1 − �An) , (3)

where n represents the number of the transient step, ∆t the time
in between transient steps and τ the relaxation factor. The relax-
ation factor used in between transient steps is chosen as τ = 2

3
(Galerkin scheme) [4].

The magnetic flux density �B and the eddy-current density �J
are computed from the magnetic vector potential as follows:

�B = ∇× �A, �J = −σ
An+1 − An

∆t
. (4)
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The resulting global matrix of both approaches is symmetric,
thus allowing the storage as lower or upper triangular matrix
and the use of the Cholesky-CG combination [5] of the ITL
package [6]. Saturation effects are computed with an overlaying
Newton-Raphson procedure for each transient step.

In the 2D approach, the rotor mesh of the machine is turned
and the air-gap is remeshed for each transient step. The benefit
of the remeshing strategy lies in a time stepping independent of
the mesh of the machine and thus an arbitrary rotation angle.

To represent the rotational movement in the 3D model a lock-
step method is utilized. In this method the movement is purely
virtual. Boundary conditions are used which pair edges in a
sliding area mesh. In each step a search function connects the
edges in this area depending on the displacement in between the
transient steps, while the mesh remains stationary [7]. Thus, the
flux is coupled between moving and stationary regions.

III. FINITE-ELEMENT MODELS

Only magnetically relevant components of the induction ma-
chine are modelled. Since the geometry of the machine is sym-
metric, antiperiodic boundaries reduce the FEM model to one
pole pitch or 90◦ .

The 3D model of the induction machine is depicted in Fig. 1
on the right with translucent iron regions. With this model the
torque of the machine is determined and compared to the results
of the 2D calculations on the model in Fig. 1 on the left.

Fig. 1
2D AND 3D MODELS OF THE INDUCTION MACHINE

IV. CALCULATIONS AND RESULTS

All calculations are conducted at a constant speed of
n = 970 rpm. The mechanical step angle amounts to
α = 4◦, leading to ∆t = 0.68728 ms in between transient
steps. The three-phase current of I = 472 A is impressed
into the stator coils. The material conductivity of aluminum
σ = 1.834 · 107[Ωm]−1 at material temperature T = 200◦C is
used for the massive aluminum regions of the rotor cage.

The rotor-bar currents are automatically induced by the
electro-magnetic field in the 2D calculation of the middle slice
and in the 3D calculation. In the other slices the computed
rotor-bar currents are applied. The end ring of the rotor cage
is taken into consideration as well.

The 2D calculated torque in time and frequency domain is
depicted in Fig. 2 (time domain for middle slice). The resulting
torque is generated by superposition of the torque values of all
slices (frequency domain for superposition). The results of the
3D computation are shown in Fig. 3.
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TORQUE OF THE 2D CALCULATION
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TORQUE OF THE 3D CALCULATION

The frequency spectra of the 2D and the 3D calculations cor-
respond rather good in the stationary value of the torque. Addi-
tionally both calculations show leading amplitudes at frequen-
cies of approximately f = 390 Hz and f = 600 Hz.

V. CONCLUSION

In this paper a two-dimensional and a three-dimensional ap-
proach for the calculation of a skewed induction machine are
compared. In the full paper 2D calculations with more than
three slices of the machine will be presented and compared with
the three-dimensional calculation. Additionally, the differences
in the frequency domain will be investigated.
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      Abstract – A finite element analysis is conducted to provide radial 
stresses in an induction motor. An approach is implemented to find the 
primary contributors and likely causes of the zero order peaks in the 
radial magnetic stress spectrum for an ideal case. 

INTRODUCTION 

     One of the most acoustically efficient low order 
circumferential vibration modes for cylinder-like structures 
is the “breathing mode” where k, the circumferential 
wavenumber, is zero [1]. This describes a circumferentially 
uniform vibration amplitude. This motion can be caused by 
zero order peaks in the magnetic forcing function. Zero 
order excitation can also cause vibration with mode numbers 
just above k=0, “low order modes” which also radiate well. 
This situation can occur in structures with non-periodic 
discontinuities such as supports. The focus of this study is to 
gain some insight into some of the origins of k=0 magnetic 
excitation in an induction motor 

BACKGROUND

If two flux density waves in the air gap are represented as 
B1cos (k1 + 1t) and B2cos (k2 + 2t) then , by use of a 
trigonometric identity, their product (proportional to the air 
gap stress wave) becomes [B1B2]/2 cos[(k1+k2) +( 1+ 2)t]
+ cos[(k1-k2) + ( 1- 2)t]}. Consequently a stress wave with 
zero mode number results any time the cross product of two 
flux density waves yields (k1+k2) =0 or (k1-k2) =0.

              DESCRIPTION OF ANALYSIS AND PROCEDURE 

     The finite element model, shown in Fig. 1, represents a 
single pole of a twelve pole, Y-connected, three phase 240 V 
induction motor.  

Figure 1. The Finite Element Model  

     The supply frequency is 60Hz. Ideal conditions are 
assumed, i.e. pure sinusoidal and fully balanced phase 
voltages and no rotor eccentricity. After the startup transient 
settled out, a one cycle simulation was conducted with time 
steps every 1/6000 second to capture forcing function 
variations up to 3 kHz. There were one thousand points 
along the arc in the air gap at which the flux densities were 
calculated for each time step. 
      A MATLAB 2D FFT routine was applied to the spatially 
sampled air gap radial flux density distribution over all 
simulation time steps. The radial stress was then 
approximated for each time step using a B-squared 
approach. (Outside the startup transient this normally 
provides results similar to the Maxwell stresses [2]). A 2D 
FFT was then applied to this result. Finally an MATLAB 
routine was written to match up flux density waves with the 
same wavenumbers which when multiplied would yield a 
k=0 stress wave. Flux density wavenumbers up to 600 were 
investigated over the entire frequency range of zero to 3 
KHz. A table of flux density waves which played a role in 
the k=0 stress wave formation was then obtained. 

RESULTS

      Fig.2 illustrates the frequency spectrum for the zero 
wavenumber radial stresses. The frequencies of a few of the 
peak stress waves are flagged in the spectrum. 

Figure 2. Spectrum of the “B-squared” Stresses for k=0. 
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2.4%  slip 

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



       We will focus on the strongest component in the k=0 
stress spectrum; the wave at 1754Hz. There are numerous 
pairs of flux density waves whose product results in a stress 
wavenumber of zero at this frequency. The MATLAB output 
shows there are at least fourteen such pairs. The vector sum 
of these fourteen stress waves comprises the net amplitude 
shown in the spectrum above. There are three wave pairs 
however, which make up the most of the contribution. Table 
I , a very small portion of the total MATLAB results, shows 
these three stress waves. Each column represents a different 
stress wave followed by the two component flux density 
waves from which it originates.  

Table I.  Radial stress waves contributing to peak at 1754 Hz  
shown with their respective flux density components 

       The top three rows are the characteristics of the stress 
waves. The next three rows are the characteristics of one of 
the flux density waves while the following three rows are 
those for the second. The wavenumber of the two 
contributing flux density waves is listed in the last row. 
These three stress waves contribute 29dB, or practically all 
the amplitude at the 1754 Hz peak.  
           The overall MATLAB output shows that flux density 
pairs contributing to 1754Hz all  have  60Hz and a 1814 Hz 
components with but varying wavenumber. For the three 
flux density wave pairs shown above, the negative 
wavenumbers (with positive frequencies) indicate that each 
flux density wave is moving in the direction of rotor 
rotation. (The same wave could be indicated by a negative 
frequency and positive wavenumber). In the overall 
MATLAB table we find that every pair of flux density 
waves has the two moving in the same direction. The highest 
amplitude stress wave has flux density waves with mode 
number at -186.  The 1814 Hz wave in this case is likely a 
wave due to rotor slotting with a mode number of (R-P) and 
a frequency of ( -RN). The 60Hz wave in this case, may be 
a fairly high stator m.m.f. harmonic with a mode number of 
 -31P [3] .  
          The second flux density pair consists of waves having 
mode numbers of -150. For the wave at 60Hz, this is 

equivalent to a mode number of (S+P), having a frequency 
of -  (due to the interaction of the fundamental m.m.f. with 
the stator slot induced permeance variations). The wave at 
1814 Hz appears to be a slot ripple harmonic at 
{2*f*n*(R/p)*(1-s) -1}*f where f is the line frequency, R= 
number of rotor teeth, p=number of poles, s= slip, n = 
harmonic number equal to 1 here [4]. 
         The third flux density pair has k=-42. The “60 Hz” 
wave is the 7th phase belt (stator winding m.m.f.) flux 
density harmonic having a mode number of 7P pairs or 42 
and a frequency of -60Hz.  The 1814 Hz wave is a slot flux 
density harmonic with a mode number of (S-R+P) or minus 
42 and a frequency of - ( -RN) rad/sec or plus 1814 Hz (N 
here is the rotor speed in radians/second).  

SUMMARY AND DISCUSSION

     This approach reveals that the resultant stress wave of a 
given wavenumber can have its origins in several (if not 
numerous) contributing stress waves which in turn are 
composed of various flux density wave pairs. A similar 
approach, which may be useful from a design standpoint, is 
to switch this process and scan the wavenumbers at a given 
frequency. However it is likely that multiple contributors, 
rather than a single dominating source will be found. 
        From a more general perspective, we note that high 
wavenumber flux density waves can contribute to n=0 and 
can contribute with relatively strong amplitude. Additionally 
we note that a high number of pole pairs, while ensuring 
against the “low” order mode excitation, may not help with 
zero order modes. Finally, these same zero order radial 
excitation modes may relate directly to unsteady torque 
modes as well [4].    
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Frequency  (Hz) 1754.4 1754.4 1754.4 
Amplitude (Pascals) 14.98 10.39 4.56 
Phase (radians) 2.138 2.447 2.34 
Frequency 1 (Hz) 1814.4 1814.4 1814.4
Amplitude 1 (Tesla) 0.021 0.00055 0.002826
Phase 1 (radians) -0.856 1.421 2.603
Frequency 2 (Hz) 60.0 60.0 60.0
Amplitude 2 (Tesla) 0.00179 0.04750 0.004061
Phase 2 (radians) -2.99 -1.0252 0.263
 k -186 -150 -42 
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Abstract  A method to calculate torque of induction motor considering 
the effects of harmonic iron losses is proposed. The negative torque caused by the 
eddy current and the hysteresis phenomena in the stator and the rotor core is 
calculated form the time-variation of the magnetic field distribution obtained by 
the nonlinear time-stepping finite element analysis. The calculated negative and 
the total torques agree well with the experimental results. It is clarified that the 
negative torque is not negligible in case of the analyzed motor and that the 
accuracy of the torque calculation is improved by the proposed method.  

I. INTRODUCTION

It is well known that the magnetic fields in induction motors 
include much time-harmonics even if the motors are driven by 
sinusoidal voltage sources. Especially, the stator and the rotor slot 
harmonics cause relatively large harmonic losses at the stator and 
the rotor core. It can be considered that the harmonic fields also 
cause breaking force, which may decrease the torque of the motors. 
But the there are few reports which estimate this effect using the 
electromagnetic field analyses because the direct consideration of the 
eddy current and the hysteresis phenomena in the laminated core 
requires vast of computer resources 

From these points of view, we introduce the method to calculate 
the negative toque approximately from the time-variation of the 
electromagnetic field obtained by the finite element method. The 
measurement of the negative and the total torque of the induction 
motor are also carried out to examine the validity of the calculation. 

II. CALCULATION METHOD

Fig.1 shows the outline of the negative and the total torque 
calculation. The calculation method consists of two steps.  

First, the electromagnetic field of the motor is analyzed by the 
nonlinear time-stepping finite element analysis coupled with the 
primary voltage equation. Combined 3D-2D formulation [1] is 
applied to consider the end-effects. At this step, the conventional 
result of the torque T0, which neglects the effects of the harmonic 
core losses �Wc, is obtained. The harmonics copper losses �W1,
�W2, which are the losses at the primary winding and the rotor cage, 
are also obtained directly by the finite element analysis. 

Second, the harmonic losses of the stator and the rotor core 
�Wc are calculated approximately from the time-variation of the 
flux density obtained by the first step [2]-[4]. Although there are 
many kinds of harmonics caused by the stator and the rotor 
magnetic motive force, the slips of them can be considered as 
nearly 1.0 at the rating condition. Thus, the negative torque caused 
by the harmonic fields can be calculated approximately from the 
harmonics losses and the rotational speed � due to the classical 
theory. The total torque can be also calculated by subtracting the 
effect of the harmonic core losses from the conventional result T0.

III. MEASUREMENT METHOD

Fig.2 shows the system for the measurement of the negative 
torque of the induction motor at synchronous speed. First, the 
induction motor is rotated without the power supply using the 
synchronous permanent magnet motor. At this moment, the input 
power of the permanent magnet motor includes not only the own 
losses but also the mechanical loss of the induction motor. Next, the 
power is supplied to the induction motor. The input power of the 
permanent magnet motor increases according to the voltage of the 
induction motor. It can be considered that this increase corresponds 
to the negative toque generated by the induction motor. 

The total torque of the induction motor at the load condition is 
also measured using the torque detector with the analyzing recorder. 
The average torque is obtained from the 32000 data at steady 
rotation with the sampling time 100�s.

Stator and Rotor Core Loss Calculation

Harmonics Eddy Current Losses of Core �Wce

Minor Hysteresis Losses of Core �Wch

Total Harmonic Core Losses �Wc
�

Wce
�

Wch

Time variation of Magnetic
Field Distribution 

Harmonic Primary Copper Losses �W1

Harmonic Secondary Copper Losses �W2

Torque neglecting effect of harmonic core losses T0

Finite Element Analysis

Electromagnetic Field Equation 
Primary Voltage Equation Coupled 

Negative torque by harmonics
c21 WWWT ��

�

Total torque
cWTT �� 0

Fig.1. Outline of calculation method 
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 Fig.2. System for measurement of negative torque at synchronous speed.
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IV.  RESULTS AND DISCUSSION

A 400W cage induction motor with semi-closed stator and 
rotor slots is measured and analyzed. 

Fig.3 shows the space and the time variation of flux density 
and the loss distribution of the motor at synchronous speed. The 
time variation of the flux density at the stator teeth top (b) includes 
much time-harmonics, which is caused by the rotor slot ripples due 
to the movement of the rotor. On the other hand, the time variation 
at the rotor teeth top (d) also includes much time-harmonics caused 
by the stator slot ripples. As a result, the loss concentrates at the 
stator and the rotor surface. Fig.4 shows the measured and the 
calculated negative torques at synchronous speed. Fig.5 shows the 
measured and calculated total torque due to the load. The calculated 
result by the conventional method is also shown. It is clarified that 

the accuracy of the calculation is improved by the proposed method. 
The negative torque is nearly 5% of the rating torque. 
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Abstract— The calculation of induction machines with squirrel
cages using the Finite-Element Method (FEM) requires a tran-
sient solving process. The rotation has to be taken into account.
Therefore a rotating air gap is implemented. The formulation for
the transient solver is given. Finite-element models of an induc-
tion machine with centric and excentric positioned rotor are cal-
culated. The formulation for the computation of the surface-force
density on the stator teeth is presented. For both variants of the
induction machine the forces are calculated and compared.

Index Terms— Transient 2D FEM Calculation, Excentricity,
Induction Machine, Surface-Force Density

I. INTRODUCTION

Due to fabrication tolerances the rotors of electrical machines
are usually not positioned centrical. In case of an induction ma-
chine used as a power-steering drive this has strong effect on the
acoustic behaviour and therefore on the customer satisfaction.
In order to estimate the effect of excentricity the force densities
on the stator teeth have to be calculated.

In this paper two variants of an induction machine are com-
pared. The rotor of the first variant is positioned centric. In
case of the second variant the rotor is shifted radially but still
rotated around the stator axis. Both variants are calculated with
a 2D-transient solver and afterwards the force excitations on the
stator teeth are computed.

II. FORMULATION OF THE TRANSIENT SOLVER

The applied solver is part of an object-oriented solver pack-
age [1]. The transient FEM formulation takes the rotational
movement into account and two finite-element meshes have to
be handled. The 2-dimensional

��
-approach is node-based. The

magnetic vector potential is used in all regions. The equation� � � � � � 	 � 
 � � � � � �  � � � 	 � � � ��  � � �  � �
d �

� � � � � 	 � � � � �  � �
d � (1)

has to be solved in the complete model � and is given in
Galerkin formulation [2]. The material parameters



and

�
represent the non-linear reluctivity and the linear conductivity.
The shape function of an element is defined by

� 	
. Triangular

shaped elements are used.
� � � �  �

describes the z-component of
the given coil current-density as the only excitation.

For linear interpolation of the time-dependent variables the
first order time-step algorithm is applied and

� �  �
can be writ-

ten as function of time:� �  � � � � � � � � � � � � � � �
(2)� �  �  � � � � �  � �  �  ��  � �  �  � !
(3)

�
is the weighting parameter and is set to

� � "# according to
the Galerkin scheme [3].

III. FORMULATION OF THE SURFACE FORCES

With the Maxwell stress tensor

�� � �$ �% � " & ' � � ( � � � ( " � � � � ) *� � ) *" � +
(4)

an expression for the local surface-force density is given [4].
The index % stands for the normal components of the vectors

�'
and

�(
.

�% � " is the normal vector of the boundary surface from
region 2 to 1.

) *�
and

) *" are the magnetic-coenergy densities
of these regions.

IV. FINITE-ELEMENT MODELS

For the regarded application investigations have shown that
an induction machine with 24 stator slots and 26 rotor bars is a
very good variant [5]. The lamination is shown in Fig. 1.

Fig. 1
LAMINATION OF THE INDUCTION MACHINE, TWO POLE PITCHES
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Although only two pole pitches are depicted, the machine
is modelled as a � � � � -model since the number of elements is
small for 2D-calculation in general. The models have about
25.000 elements and 12.500 nodes.

In Fig. 2 closeups of the airgaps of the centric and the ex-
centric model are opposed. To the left the centric model is de-
picted. The airgap has a constant value of � � � � � mm. Next
to it the excentric model is shown. The airgap differs between

� �
� � � � � �

mm and � � � � � � � �
mm. The maximal airgap is

depicted.

Fig. 2
CLOSEUPS OF CENTRIC AND EXCENTRIC MODEL

V. 2D-TRANSIENT FEM CALCULATION

In a first step the two variants are calculated with the 2D-
transient solver. The operation point is at � � � � � � min 	

	
with 
 	 � � � � �

Hz. The sinusoidal stator current densities are
sampled with 64 steps per period. The resulting time step is
 � � � � � �

s. The torque of which the time-dependent be-
haviour is depicted in Fig. 3 and the overall force are computed.
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Fig. 3
TIME-DEPENDENT TORQUE BEHAVIOUR

The average torque is not affected by the excentricity [6].Its
value is  � � � � � Nm. But for the overall forces on the rotor the
excentricity has very strong effect. The average value increases
from � � � � � � �

� � � � � � �
N to � � � � � � � � �

� � � � � � �
N.

VI. SURFACE-FORCE DENSITY CALCULATION

Equation (4) is used to calculate the surface-force density on
the stator teeth. The force density is only computed towards the
airgap since the forces between the lamination and the copper
winding is much smaller. The main excitation will appear in

radial direction towards the rotor. Usually the normal forces
are about 10 to 100 times the tangential.

Fig. 4 shows the surface-force densities for one certain time
step for both variants. In case of the centric variant the forces
which occur on the one stator side are compensated on the op-
posite side. If compared with the force excitation for the same
time step in the excentric case the forces have no longer the
same value on the opposite sides. Consequently they are not
compensated. The stator is excited asymmetrically with the ro-
tor frequency.

Fig. 4
SURFACE-FORCE DENSITIES FOR BOTH VARIANTS

VII. CONCLUSION

In this paper an induction machine with squirrel cage as
power-steering drive is calculated with a 2D-transient solver.
The machine geometry is variied by placing the rotor centri-
cally and excentrically. The torque and the overall force on the
rotor is computed and compared. Although the average torque
and its behaviour are not significantly affected by the excentri-
city the overall forces rise strongly.

In a next step the surface-force densities on the stator teeth
are calculated. It can be noted that the excentricity has strong
effect onto the surface-force density distribution. The forces on
the one side of the machine are not compensated on the other
side any longer. The stator teeth are excited asymmetrically. It
is obvious that this will generate extra noise.

Beyond this the deformation of the stator will be discussed
and further results will be presented in the full paper.
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Abstract  The effects of magnetic saturation on the radial 
magnetic force in induction machines when the rotor is performing 
cylindrical circular whirling motion are studied in this paper. Impulse 
method in the finite element analysis is used to calculate the forces and 
the eccentricity harmonics from both, the air gap flux density and rotor 
currents. The forces are studied as a function of supply voltage in order 
to find out the effects of the saturation on them. The maximum radial 
force is found to be limited by saturation and saturation also couples the 
eccentricity harmonics together. 

INTRODUCTION

An electromagnetic force acts between the rotor and 
stator if the rotor is performing cylindrical circular whirling 
motion with respect to the stator [1]. The magnetic saturation 
influences on the amplitude and the direction of the force. 

The effects of saturation are quite difficult to take into 
account analytically and the analytical models give only an 
approximation of the saturation effects [2]. In the numerical 
studies of rotor eccentricity, some results of the effects of 
saturation are presented in [1,3]. 

In this study, the effects of saturation are studied using 
impulse method in finite element analysis. The forces are 
calculated as a function of whirling frequency and supply 
voltage at no load and rated load. The effects are also 
considered from the air-gap flux density and rotor current 
harmonics. 

METHODS

The calculation of the magnetic field is based on the time-
stepping, finite element analysis. The magnetic field is 
supposed to be two-dimensional and the laminated iron core 
is treated as a non-conducting magnetically nonlinear 
medium, which is modeled by a single-valued magnetization 
curve (Fig. 1). For a comparison, the forces were also 
calculated for a linearized motor which has a constant 
relative permeability µr = 1000. 
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Fig. 1. The single-valued magnetization curve used. 

The impulse method [4] is utilized in the analysis. The 
basic idea of the impulse method is to move the rotor from its 
central position for a short period of time. The displacement 
excitation produces the flux density harmonics into the air 
gap. The harmonics, in their turn, induce the equalizing 
currents into the rotor bars and cause forces between the rotor 
and stator. During the time-stepping analysis, the harmonics 
of order p±1 (p is number of pole pairs of the motor) from 
rotor currents and air gap flux density distribution are 
calculated at each time step. The forces are calculated by a 
method, based on the principle of the virtual work [5]. Using 
spectral analysis techniques the frequency response of the 
harmonics and forces is calculated using the excitation and 
response signals. 

RESULTS

A four-pole 15 kW induction motor was chosen for test 
motor. The parameters of the motor are given in [4]. In the 
analysis, the length of the cosine-type displacement pulse 
was 0,01 s and the amplitude 11% of the air gap length. The 
total simulation time was 1 s with a constant time-step of 
0.05 ms. In the spectral analysis, the number of sample points 
was 8192 and the length of the signal 4 s, by adding the zero 
level at the end of the sample to increase the frequency 
resolution. 
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Fig. 2. The radial and tangential component of the force as a function of 
whirling frequency at no load.  - normal and x - the linearized motor. 
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If the forces are divided into a radial component in the 
direction of the shortest air gap and a tangential component 
perpendicular to the radial one, the components are almost 
independent on time. 

Fig. 2 shows the radial and tangential components of the 
force as a function of the whirling frequency at no load and 
supplied by the rated voltage 380 V for both normal and 
linearized motor.  

Fig. 3 shows the radial and tangential components of the 
force as a function of the supply voltage at whirling 
frequencies 5 Hz and 25 Hz. At no-load condition, the 
maximum force occurs at 25 Hz for the four-pole motors. 
Fig. 3 shows that the maximum force is reached near to 300 
V and for bigger values of supply voltages the amplitude of 
the force is decreased. At a 5 Hz whirling frequency, the flux 
density harmonics are strongly damped by rotor currents and 
the radial component of the force behaves like in the 
linearized case. 

The ratio of the tangential and radial force components 
changes with the voltage. This means that the saturation also 
affects the direction of the force. 
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Fig. 3. The amplitudes of the force components as a function of supply 
voltage at no load. Marking: x - linearized 25 Hz,  - normal 25 Hz,  - 

linearized 5 Hz and + - normal 5 Hz. 

Fig. 4 shows the behaviour of the flux density harmonics 
p±1 as a function of supply voltage at whirling frequencies 5 
Hz and 25 Hz at no load and voltage level 380 V. 
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Fig. 4. The flux density harmonics (p±1) as a function of supply voltage at 
rated load. Marking: x – p+1 at 25 Hz, * – p-1 at 25 Hz, – p+1 at 5 Hz and 

– p-1 at 5 Hz. 

The effects of saturation can be seen easily from the flux 
density harmonics versus voltage behaviour. The amplitudes 
of the harmonics start to decrease approximately at the same 
voltage as the forces. 
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Fig 5. p±1 harmonics of the rotor currents at rated load at 350 V and 200 V. 

Since now, we have discussed the results calculated at no 
load. At rated load, the behavior of the forces and flux 
density harmonics is similar as at no load, except that the 
frequency response of the forces has two peaks, because the 
slip differs from zero at the rated load. Then the maximum 
force and also the maximum value of flux density harmonics 
occur at different whirling frequencies. Respectively, the 
minimum of the rotor current harmonics occurs at different 
whirling frequencies. Fig. 5 presents the calculated rotor 
current harmonics p±1 as a function of whirling frequency at 
rated load and at supply voltages 200 V and 350 V. The 
coupling of the harmonics due to the saturation can be seen 
from figure. At 350 V, the motor core is saturated and the 
current harmonics seem to influence each other. At 200 V, 
the motor core is not saturated and no coupling can be found. 

CONCLUSIONS

The effects of saturation on the electromagnetic forces in 
induction machines with rotor eccentricity are studied. The 
forces and harmonics of flux density and rotor currents are 
calculated using impulse method in finite element analysis. 
The results show that the magnetic saturation limits the 
maximum force and influences also on the direction of the 
force.
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Abstract – IGBT PWM inverter has been concerned that insulation 
breakdown and irregular voltage distribution on stator winding due to 
high rate of voltage rise (dv/dt) caused by high-frequency switching and 
impedance mismatches between inverter and motor. 

In this paper, voltage distribution in stator windings of induction 
motor driven by IGBT PWM inverter is studied. To analyze the 
irregular voltage of stator winding, high frequency parameter is 
computed by using finite element method (FEM). Electro-magnetic 
transient program (EMTP) analysis of the whole system, induction 
motor and PWM inverter, is proposed. An induction motor, 50 [HP], 
with taps from one phase and a switching surge generator were built to 
consider the voltage distribution.  

I. INTRODUCTION

Insulated gate bipolar transistor (IGBT) PWM inverter has 
been concerned that insulation breakdown and irregular 
voltage distribution on stator winding due to high rate of 
voltage rise (dv/dt) caused by high-frequency switching and 
impedance mismatches between inverter and motor. These 
steep pulses and irregular voltage of stator winding lead to 
occur partial discharge and eventually premature insulation 
breakdown [1-3]. 

In this paper, voltage distribution in each turn of stator 
windings of induction motor driven by IGBT PWM inverter 
is studied. In order to calculate the parameter, resistance, 
inductance and capacitance among turns of end-line coil, a 
high frequency equivalent circuit model of inverter-cable-
motor was proposed and analyzed with finite element method 
(FEM). Also, by using the electro-magnetic program (EMTP), 
the whole system of stator winding for induction motor 
driven by IGBT PWM inverter is modeled.  

Finally, for experiment of voltage distribution, a switching 
surge generator as pulse voltage source and the induction 
motors tapped from initial turn to fifth turn were built and 
analyzed. Various rise time, frequency, and different cable 
lengths were applied to an induction motor. 

II. THE SLOT MODELING OF 50 [HP] INDUCTION MOTOR

In order to analyze voltage distribution in stator winding of 
low voltage induction motors fed by IGBT PWM inverter, 
the induction motor, 50 [HP], 380 [V], is applied. The stator 
slots are 48, and the rotor slots are 40. The wires of 1.2 [mm] 
�3 and 1.1 [mm]�1 are connected total 96 turns as parallel. 

One slot out of stator slots 48 and rotor slots 40 are 
modeled to calculate the parameters as shown in Fig. 1 by 

using Maxwell 2D which is finite element method (FEM) 
program [4-5]. 

Fig. 1. Cross section of slot model and mesh diagram for FEM analysis  

It is essential that first turn to fifth turn should be 
expressed distributed parameter circuit as shown in Fig. 2. 
The other turns are applied concentrated constant circuit. 

It can be known that the resistance increases and the 
inductance decreases according to rising the frequency due to 
skin effect as shown Fig. 3. 

III. SIMULATION OF SURGE EQUIVALENT CIRCUIT

In order to analyze the voltage distribution in stator 
winding of low-voltage induction motor driven by IGBT 
PWM inverter, electromagnetic transient program (EMTP) 
analysis is performed, because voltage distribution of stator 
appears as unbalanced voltage [6]. 

Fig. 2. Equivalent circuit of whole induction motor system 
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Fig. 3. Resistance and inductance as increasing frequency 

Turn to turn voltage distribution is shown Fig. 4 as 
increasing cable length when frequency is 20 [kHz], and rise 
time is 150 [ns]. First turn voltage is much higher than the 
other turns.
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Fig. 4. Turn to turn voltage distribution 

IV. EXPERIMENTAL RESULT

The stator winding was insulated by standard varnish 
impregnation and taped first turn to fifth turn from one phase 
for measurement of the voltage distribution as shown in Fig. 
5. In order to prevent the insulation breakdown in weld part, 
KAPTON insulation type that is superior to insulation 
characteristics in spite of over 200 ˚[C] was used.

Fig. 5. The tap for measurement of the voltage distribution 

Fig. 6 shows the example of experiment voltage waveform 
between first turn and ground when rise-time of inverter has 

150 [ns], the length of cable is 100 [m], and switching 
frequency is 20 [kHz]. As shown in Fig. 6, the surge voltage 
occurred in initial turn of stator winding. This over-voltage 
causes to voltage reflection phenomena due to impedance 
mismatches among the inverter, cable, and motor. This surge 
voltage results in premature insulation failure of induction 
motor driven by IGBT PWM inverter. 

Fig. 6. Example of  turn to turn voltage waveform  

V. CONCLUSION

In this paper, the voltage distribution of in stator winding 
of low-voltage induction motor driven by IGBT PWM 
inverter is analyzed. To analyze the voltage distribution, slot 
model and equivalent circuit of one coil is proposed. The tap 
for voltage measurement experiment is built in induction 
motor. The characteristics of voltage distribution by the 
simulation and experiment is that the voltage of first turn is 
generally higher than that of the other turns and as rise-time 
become fast, the magnitude of voltage is increased. 
Furthermore, according to increase the cable length between 
inverter and motor, the voltage of induction motor is 
increased. When this results are considered, induction motor 
that is able to endure surge voltage is needed. 
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Abstract � This paper presents the analysis of loss distribution in 3-
phase induction motor using PWM (Pulse-Width Modulated) inverter 
drive. The analysis is based on the time-stepping finite element method. 
The loss of induction motor is separated into mechanical loss, conductor 
loss, and iron loss. The iron loss is evaluated by the frequency analysis of 
flux density using DFT (Discrete Fourier Transforms) and the data of 
iron loss curves. The iron loss curve data is provided by manufacturing 
company. In order to calculate loss distribution of PWM inverter fed, 
voltage profiles are performed. The result is compared with the 
sinusoidal drive loss distribution. The validity of this method is verified 
by the comparison of the estimated values with measured one. 

INTRODUCTION

In recent years, PWM inverter drive is mainly used as the 
input of motor rather than sinusoidal voltage. The average 
voltage of the inverter output is equal to that of sinusoidal 
input, but it causes current ripple. And the high frequency 
current ripple decreases the motor performance [1]. The iron 
loss and conductor loss are changed in PWM waveforms. 
There is a need for the quantitative analysis, because it leads 
to improvement of motor performance. In traditional ac 
machine theory, the core loss is viewed as being caused 
mainly by the fundamental frequency variation of the 
magnetic field, which is not sufficiently accurate. Nick 
Stranges, Raymond D. Findly studied the method for 
predicting rotational iron losses in three phase induction 
motor stators [2].  

In this paper, the loss distribution of induction motor is 
calculated considering the various frequency PWM methods. 
The analysis is based on the time stepping FEM (Finite 
Element Method). The voltage of inverter output is described 
according to time, and transient FEM is performed, where the 
time is changed on the each analysis step. And the simulation 
results, which are the iron loss, conductor loss, and the 
current, are compared with test result.  

ANALYSIS MODEL AND METHODS

The 3-pahse Induction Motor 

The stator has 48 slots and the rotor is consisted of 40 
conductor bars. Fig. 1. show the quarter cross-section of the 
induction motor and Table I describes main specification of 

the motor. In order to compare sinusoidal voltage with PWM 
inverter output voltage, voltage profiles are shown in Fig. 2. 
Sinusoidal frequency is 60 [Hz], and PWM frequency is 
variable from 2-12 [kHz]. 
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Fig.  1. Analysis model 

Table I. Specifications of the induction motor 

Specification Value 
Input voltage 380 (line-to-line) 
Rated Output 35 (kW) 
Frequency 60(Hz) 
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Fig. 2. The voltage profile when PWM frequency is 2 [kHz], sinusoidal 
frequency is 60 [Hz] 
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Analysis Methods 

The loss of induction motor is separated into mechanical 
loss, conductor loss and iron loss. The mechanical loss is 
ignored in simulation. The conductor loss is separated into 
the primary winding conductor loss and secondary winding 
eddy current conductor loss. It is possible to calculate the 
conductor loss with FEA result, and the method is described 
in this paper. Iron losse is divided into the histerisis loss and 
eddy current loss. It is difficult to estimate the eddy current 
loss of iron. In this paper, iron loss is calculated by the 
freuqency analysis of flux density using DFT and iron loss 
data sheet [3]. The iron loss sheet is provided by core 
manufacturer company. Flux density of iron core is analyzed 
by each element harmonic component, and  iron loss is 
calculated by the harmonic component of each element 
considering the magnitude of flux density and frequency. The 
proposed method is shown in Fig. 3.  

ANALYSIS RESULTS AND CONCLUSION 

Table II shows the loss distribution according to drive 
method. The sinusoidal current and PWM inverter drive 
current are shown in Fig. 4. The effect of PWM inverter is 
high frequency current. That current increases the conduction 
loss, and iron loss. When driving with PWM inverter, iron 
loss and conductor loss are greater than sinusoidal voltage. 
The flux density waveforms of elements in stator yoke and 
rotor bridge are shown in Fig. 5.  
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Fig. 3. Flow chart of iron loss computation 

This paper presents the loss distribution of 3-phase 
induction motor comparing PWM inverter and sinusoidal 
drive. The proposed analysis method and experimental result 
will be reported in extend paper in detail.  And the proposed 
method is expected that can be applied to other motors. 
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Table II. Loss distributions 

Power & Loss Sinewave PWM (8kHz) 
Input power 43163 38135 
Primary conductor loss 1190 988 
Secondary conductor loss 637 818 
Iron loss 640 882 
Output power 39640 34391 
Efficiency 91.37 % 90.60 % 
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Fig.  4. Current display according to voltage profiles. 
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A Discrete Fourier Transform Based Method to Compute Steady State Operation of
Induction Motors Using Complex Finite Elements
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Abstract- The authors propose a method to compute induction
motors with consideration of space harmonics. The idea is based on
computing the spectrum of the slot's currents using a discrete Fourier
transform. We use the double air gap method together with complex
finite elements to compute elementary problems corresponding to a
harmonic order. Finally, superposition permits the determination of the
electromagnetic field distribution in the whole machine. An application
example is given to show the reliability of the method.

INTRODUCTION

The common methods used for analyzing induction
machines with consideration of space harmonics derive from
the per-phase chain equivalent circuit [1]. Finite element
based methods dealing with space harmonics consist on
computing once the stator source problem, i.e. field due to
stator current, and to use a Fourier analysis to determine the
air gap harmonic fields. Then, each of these harmonic fields
is used in a second step for the coupling with a rotor problem.
Finally, superposition permits the computation of the overall
field in the machine [2].

In this paper, the authors propose an alternative method to
compute induction machines with consideration of space
harmonics. Instead of a spectral decomposition of the air gap
field, we have focussed our attention on the stator currents
whose spectrum is calculated using a Discrete Fourier
Transform (DFT).

SLOT CURRENTS DECOMPOSITION

Let us consider a 3-phase induction motor with a spatial
period of 2π/r. Each period consists of Ns stator slots
numbered from 0 to Ns-1. The machine is supplied from a
balanced 3-phase sinusoidal system of currents whose
complex phasors are:

( )1,3q;)3/)1q(2jexp(II q =−π−= (1)

This leads to a discrete and periodic distribution of the

slot currents that forms a sequence of Ns discrete values kJ ,

k=0…Ns-1. The DFT of kJ is:

∑
−

=

π=
1N

0k
skn

s

)N/2jnkexp(JY ; n = 0…Ns-1 (2)

It is well known that for 3-phase winding, the space
harmonics are of the form n=r×(1±3m), m≥0. In the case of a
p pair pole machine and integral slot winding the periodicity
of the machine is r=p and the harmonics reduce to
n=p× (1±6m). The total stator slots being p×Ns. The sequence

nY states for the forward wave. Using the DFT properties,

the backward wave DFT (corresponding to
*

kJ ) is given by:
*

nNn sYX −= (3)

The harmonic order for nX takes negative values.

The sequence kJ is called the inverse DFT of the

sequence nY . The formula for the inverse DFT is:

∑
−

=

π−=
1N

0n
sn

s

k

s

)N/2jknexp(Y
N

1
J ; k = 0…Ns-1 (4)

This implies that for a harmonic order n corresponds a
stator current distribution in the slots given by:

ssnnk N/)N/2jknexp(YJ π−= ; k = 0…Ns-1 (5)
Equation (4) naturally suggests the use of superposition to

solve the multi-harmonic problems considered here. Of
course, saturation can be incorporated in an average sense but
this is technically incompatible with superposition principle.

ELECTROMAGNETIC MODELING

Let us consider two domains Ds and Dr of an induction
machine, Fig.1. The air gap De is included both in Ds and Dr.
The relevant Maxwell's equations under a 2D approximation
and the use of a time harmonic formulation lead to the
following magnetic vector potential (mvp) equations (for the
nth harmonic order):

0)A.( snsns =γ+∇ν∇ in Ds (6)

0Ajs)A.( rnrsnrnr =σω−∇ν∇ in Dr (7)

where ν is the magnetic reluctivity, σ the electric
conductivity, sn the slip for nth harmonic, ωs the time

pulsation and snγ the stator current density.

The mvp snA and rnA must coincide in the air gap De.
So, because they are harmonic functions, the following
relations arise:

),R(A),R(A rrnrsn θ=θ on Γr (8)

),R(A),R(A srnssn θ=θ on Γs (9)

Rr and Rs are the radius of Γr and Γs respectively.
To determine the distribution of the mvp in the machine,

we use the method described in [3] which consists on
considering only the nth harmonic mvp in (8) and (9) when
computing the nth harmonic problem.
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Fig. 1. Stator and rotor domains - the air gap is zoomed

The whole procedure may be described in terms of the
following sequence of steps:

Step 1 Impose 3-phase complex unitary currents in the

stator winding, i.e. 1I = in (1) and compute the slot current
DFT using (2) and (3). This allows the determination of the

spectrum nY and hence the significant harmonics.
Then for the nth harmonic order, proceed as follows:
Step 2 Compute the inverse DFT using (4), (5) and solve

(6) using finite elements by setting 0A sn = on both Γr and
Γext. The nth mvp harmonic is computed on Γs.

Step 3 The stator winding is not supplied, i.e. 0I = in

(1). We solve (6) by setting 0A sn = on Γext and

)jnexp(),R(A rsn θ=θ on Γr. This step corresponds to the

armature reaction. The nth mvp harmonic on Γs is then
computed.

Step 4 We set )jnexp(),R(A srn θ=θ on Γs and we solve

(7). The nth mvp harmonic on Γr is then determined.
Step 5 The mvp in the whole machine for the nth

harmonic is then obtained using the coupling relations (8), (9)
and the computed mvp in steps 2, 3, 4.

Step 6 Determine the total per phase flux using
superposition and calculate the phase operational impedance

oZ . The absorbed current is obtained by adding to oZ the

stator phase resistance rs and the end-winding phase reactance
xew that is evaluated using classical formulas:

( )ewso jxrZ/VI ++= (10)

where V is the phase terminal voltage.
For each considered harmonic order, the final value of the

mvp is obtained by multiplying the actual mvp value by the

stator current I since we have assumed the linearity of the
magnetic materials.

APPLICATION EXAMPLE

The method described above has been applied to compute
a 3-phase, 4-pole (p=2), 2.2 kW, 380V, 50 Hz induction
motor for which we have some experimental data. The full
pitch stator winding with 3 slots per pole and phase is
distributed in 36 slots. The spectrum of the slot's currents
obtained in step 1 is shown in Fig. 2.

As expected for this integral slot winding, the significant
harmonics are of the form n=p×(1±6m), with m ≥ 0.

The torque/speed characteristics are shown in Fig. 3. A
good agreement can be seen between the computed total
torque and the experimental data. The starting torque is
overestimated if we consider only the first space harmonic.
The asynchronous crawling is clearly illustrated by the dip in
the total torque characteristic near the synchronous speed of
each space harmonic.

CONCLUSION

A novel DFT based method to compute induction motors
with consideration of space harmonics has been presented in
this paper. The use of complex finite elements allows a
significant reduction of the computation time. The presented
results reveal the effectiveness of the method when tracking
steady state operation.
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Abstract � A model allowing the simulation of induction machines 
with different rotor bars configurations is presented. The electrical 
machine is modelled by using 2D FEM and its equations are directly 
coupled with the circuit ones. A general and new contribution is added 
for the consideration of special rotor bars topologies. The movement is 
taken into account by means of the Moving Band technique, the Maxwell 
stress tensor and the mechanical oscillation equation. The model is 
applied to a double winding induction motor with a special rotor bars 
configuration. 

INTRODUCTION

Double winding induction motors are usually used in wind 
energy generation. Its performance when it is double supplied 
presents certain features of practical interest [3]. By using 
appropriate drive, it is possible to control the induction 
machine to operate as generator working above the 
synchronous speed as well as under the synchronous speed. 
This is especially convenient when a variable speed-constant 
frequency is required. In this article a double winding 
induction machine with a special rotor bar topology is 
modeled using the finites elements method. 

METHODOLOGY

The electrical machine is modeled in a 2D domain, using 
the Maxwell equations to formulate the field behavior and the 
FEM to discretize the domain. The formulation uses the 
magnetic vector potential as unknown, the Galerkin method 
to obtain the set of equations to be solved numerically, the 
Euler recurrence method to discretize the temporal derivatives 
and the Newton-Raphson method to consider the non-linear 
characteristic of magnetic materials. This, arise to the 
equation below: 

� � � � � � � � � � DUP'IPANAM tf �������� tttptµ  (1) 

In (1) A  is the magnetic vector potentials; fI , the electric 
currents in the thin conductors; tU , the electric voltages in 
the thick conductors; M , the matrix related to permeability; 
N , the matrix related to electric conductivity; P , the matrix 
that relates the thin current elements and its nodes; 'P , the 
matrix that relates the thick voltage elements and its nodes; 
D , the vector related to permanent magnet contributions and 
p , the time derivative operator. 

Thin conductors fed by external electric circuit, as static 
converters, form the machine windings. The direct-coupled 
equations that describe this connection are [2]: 

� � � � � � � � � � � �

� � � � � � � �tpttt
ttttpttp

XIGEGXG
IGEGXGILIRAQ

f321

f654ff

������

�����������  (2) 

where Q  is the matrix associated with flux linkage; R and L

correspond respectively to diagonal matrix representing the 
resistances and end windings inductances matrices; X , the 
circuit state variables vector; E , the independent electric 
sources vector and 1G  to 6G , matrices that depend on the 
circuit topology. If semi-conductors are present in the circuit, 
their commutation are automatically determined and 1G  to 

6G , automatically actualized. 
Different combinations of thick conductors connections 

can be taken into account. We can consider and describe them 
by: 

� � � � � �

� � � � tt2t1

tt

EICUC
0IR'U1AQ'

����

������

tt
tttp  (3) 

where Q'  is the matrix associated with flux linkage; 1 , the 
identity matrix; 'R , a diagonal matrix representing thick 
conductors resistances; tE , the independent voltage sources 
vector; 1C  and 2C , matrices depending of thick conductors 
connection. The most common topologies found in practical 
applications are series (Fig. 1) and parallel (Fig. 2) 
connections. 

Fig. 1. Series connection of thick conductors. 

Fig. 2. Parallel connection of thick conductors. 
For a series configuration we can write: 
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where pextextext LRZ ��  can be an external resistance and 
inductance or a resistance and an inductance related to the 
end windings. tTU  is an external voltage feeding source, 
which is equal to 0 if the coil is short-circuited. 

For a parallel configuration, we have: 
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where p'22rz ���  are the resistance and inductance 
associated to end-winding parameters. 

A particular case of parallel connection is the squirrel-
cage of the induction motors (Fig. 3) [1]. 

Fig. 3. Squirrel-cage: parallel connected and thick conductors short-circuited. 
For this case we can write: 
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where f  equals to 1 for periodicity condition and –1 if we 
have antiperiodic conditions. 

The Moving Band technique is chosen to consider the 
movement during the field calculation [4]. 

The multi-slice technique can be used to consider the 
skewing of stator slots. In this technique, the motor is divided 
into M slices uniformly distributed along its axis [1]. In each 
slice the magnetic potential and the electric currents have 
only an axial component. The strong coupling between all 
slices is imposed by the continuity of the currents flowing 
through them. 

RESULTS

The method is applied to a double winding induction 
motor with a special rotor bars configuration (Fig. 4). This 
motor has 72 stator slots and 50 rotor bars. Its windings are 
distributed into four layers, the two inner layer occupied by 
the main 8 poles winding and the outer ones by the auxiliar 
12 poles winding. The rotor bars are connected in a 10 poles 
configuration containing series and parallel connections, as 
shown in Fig. 4b.Table I shows the main characteristics of the 
motor. 

TABLE I. INDUCTION MOTOR CHARACTERISTICS
Stator diameters 350 – 480 mm Rotor diameters 122 – 347.5 mm

Inertia 5.6 kg.m2 Depth 420 mm 
Voltage 380 VRMS Frequency 60 Hz 

(a)   (b) 
Fig. 4. (a) Double winding induction motor, (b) Rotor bars configuration 

The 8 poles winding is fed by a three-phase sinusoidal 
source and the 12 poles winding is short-circuited. Both 
windings are Y connected and have no electric connection 
with each other. Fig. 5 and 6 shows some simulation results 
obtained for this configuration and Fig. 7 shows the magnetic 
flux distribution in steady-state operation. 

Fig. 5. Torque (kg.m2) transient waveforms. 

Fig. 6. 8 poles winding currents (A) waveform transient. 

Fig. 7. Flux distribution in steady-state operation. 

CONCLUSIONS

A method coupling directly the electromagnetic field, the 
external circuit and the movement equations is presented. 
Consideration of different thick conductors connection is 
made allowing the analysis with several topologies. The 
methodology is used in the simulation of a non-conventional 
induction machine. 
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Abstract--This paper presents a one slot finite element model of a 
specific type of induction motor, a solid rotor induction motor. 
This machine will have eddy currents and extra losses inside the 
rotor since the rotor doesn’t have the lamination.  The reason for 
creating a one-slot model of the solid rotor induction motor is to 
simplify the model and reduce the computational time while still 
retaining the ability to compute the rotor bar resistance and the 
leakage reactance. The paper shows how to model one slot at the 
low frequency applications and gives the comparison between one
slot and the entire induction motor results. 

Index terms—solid rotor induction motor, active power losses, one-
slot model, rotor bar resistance and leakage inductance.

I. INTRODUCTION

The Finite Element Method has many advantages
compared to the other numerical methods such as
handling complex geometries, nonlinearity etc. [1].
Since the rotor body and rotor bars are made of
conducting material in the solid rotor induction motor, 
the eddy current problem would arise. In that case, the 
Finite Element Model will be based on the nodal
solution of the nonlinear/linear diffusion equations. One
slot gives the smaller model compare to the entire
machine and this helps to reduce computation time
significantly. This  approach has been used to calculate
rotor bar resistance, leakage inductance, end ring
resistance and inductance for the conventional type of 
induction motors previously [2],[3]. 

II. THEORY

To define appropriate boundary conditions for this model 
is the most critical point. Since a one-slot model is used, 
periodic boundary conditions will be imposed along the 
radial boundaries. The radial boundaries show that the 
one slot model is just one portion of the complete
machine which carries 2p pole MMF distribution. The 
motor section with the regions is shown in Figure 1. The
magnetic vector potential relationship between the radial 
sides of the boundary is given by equation 1:

pjeAA α−= 12
(1)

In the equation α  and p denote rotor slot pitch and 
number of pole pairs, respectively. 

Fig. 1.  The rotor tooth -pitch model of the solid rotor induction motor.

The inner arc portion is assumed to be impermeable to 
flux, so the vector potential value is defined as a
constant, which is the Dirichlet boundary condition.  The 
outer radial boundary of the one-slot pitch model is 
defined as an MMF source representing the stator
equivalent current sheet. This value should give the 
same fundamental airgap flux density as the actual
stator. The harmonics due to stator slotting and phase 
belts are not included. T he outer boundary
corresponding to the stator bore has been defined as a 
line or shell region to impose a current sheet (or vector 
potential) along that arc. 

A1 A2

  a

Js

 Air gap

Rotor Bar

Rotor Body
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III. IMPLEMENTATION

The stator phase current is obtained from the AC steady 
state (magneto-dynam ic) solution. The use of the phase 
current on the line region will not satisfy the required 
boundary conditions, so the total ampere-turn equivalent 
current for the one slot pitch of the motor is applied on 
that surface. The current is distributed along the arc by 
taking into account the phase angle. Figure 2,3,4 show 
the one slot model results for different low frequency 
levels. The flux lines are getting more concentrated to 
the air gap when the frequency increases as expected. 

Fig. 2. The equi-flux lines at 1 Hz.

Fig.  3. The equi-flux lines at 8 Hz.

Fig. 4. The equi-flux lines at 16 Hz.

The equivalent ac resistance of the bar is computed by 
equating the Joule loss.

 (2)

The rotor leakage inductance is due to the entire rotor
driven flux which crosses the slot. By using the stored 
energy  in the rotor bar, the equivalent inductance can be 
calculated as follows:

   (3)

IV. RESULTS

Table 1 shows the rotor bar resistance and the leakage 
reactance comparison between the analytical and Finite 
Element results for the one slot model.

TABLE I. THE ROTOR BAR RESISTANCE AND LEAKAGE 
INDUCTANCE

Inductance  (H) Resistance (Ohm)

Finite Element 1.58E-6 6.1e-4

Analytical 1.56 e-6 6.1e-4

Figure 5 and 6 shows the resistance and leakage
inductance of the bar as a function of the rotor
frequency.
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Fig. 5. The resistance of the rotor bar.
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Fig. 6. The inductance of the rotor bar.

V. CONCLUSION

This paper gives the basic concepts, the finite element 
formulation and implementation strategies of the one slot 
model. The rotor bar resistance and the leakage
inductance can be computed for that specific type of the 
motor. The future work is going to show how to extract 
magnetizing reactance value from the total reactance at 
the one slot model. The paper als o will include how the 
rotor conductivity affects the results. 
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Abstract�  This paper deals with two efficient approaches for 
determining the mutual inductance between two thin coaxial 
disk coils in air. In the first approach we give new expressions 
for calculating the mutual inductance of these configurations. 
These results are expressed in terms of the complete elliptical 
integrals of the first and second kind, Heuman's Lambda 
function and some terms that must be evaluated numerically. 
Another approach is based on the filament method where all 
conductors are approximated by a set of Maxwell’s coils. These 
new expressions are accurate and simple. All results obtained by 
the two approaches are in excellent agreement. Also we compare 
these results to those obtained by laboratory measurements. 
 

I. INTRODUCTION 
 
IRCULAR coils are widely used in various 
electromagnetic applications such as coil guns, tubular 

linear motors, single layer coils and current reactors. The 
mutual inductance as a fundamental electrical engineering 
parameter for a coil can be computed by applying the Biot - 
Savart law directly or using other alternate methods ([1] -[5]). 
Today FEM and BEM methods are routinely used for 
magnetostatic problems, but these methods have accuracy 
problems near sharp surface discontinuities unless a high 
density of elements is used, [6]. Exact methods based on 
elliptic integral solutions for current loops have existed since 
at least the time of Maxwell but were laborious without 
computers. In [2] expressions are given for calculating the 
mutual inductance of two thin disk coils in the same plane. 
The purpose of this article is to present an elliptic integral-
based solution for two coaxial disk coils that are separated. 
This calculation leads to very accurate expressions obtained 
in terms of the complete elliptical functions of the first and 
second kind, Heuman's Lambda function and some terms that 
have to be evaluated using numerical integration. These terms 
must be solved numerically because the analytical solutions 
do not exist and kernel functions are not always smooth and 
continuous functions. Also, we give an other approach based 
on filament method, [3] where some modifications lead to 
very simple procedures for calculating the mutual inductance 
of two thin disk coils using the well-known formula for 
Maxwell’s coils [4], [5]. It will be useful to compare the 
accuracy and the computational cost of both proposed 
methods.  
 

II. CALCULATION METHOD  
 
  In [2] a basic formula from which the mutual inductance is   
derived for two thin coaxial circular disk coils with constant   
current density (see Fig. 1) is given by, 
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 In (1) we integrate over r1, r2 and � respectively. The 
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Fig 1. Thin coaxial disk coils 
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   It is important to mention that the function f(�) is not a 
smooth function at one of its ends and has a singularity.  

III. EXAMPLES 

 
   To verify the validity of presented expressions let us solve 
the following problem.  

The coil dimensions are as follows: 
New approach :  
R1 = 10 (cm),  R2 = 20 (cm),  R3 = 30 (cm),  R4 = 40 (cm),   
zQ = 10 (cm),  N1=100, N2=100  
Filament method : 
RI = 15 (cm),  RII = 35 (cm), a = b = 10 (cm),  N1  = 100,  N2 = 
100,  c = 10(cm). 
 
   The new approach gives the mutual inductance (using the 
Gaussian numerical integration) as, 
 

               M This work  = 1,22625644  (mH)  
 
   Execution time was 0.1099 seconds.  
    

TABLE   I 
COMPARISON   OF  COMPUTATIONAL EFFICIENCY 

  

N / n 
subdivisions 

M Filament  
(mH) 

Computational Time 
(Seconds) 

Error 
(%) 

10/10 1,22613781                0,28 0,00967416 
50/50 1,22625131                5,22 0,00041835 

100/100 
500/500 

1000/1000 

1,22625515 
1,22625639 
1,22625643 

             20,54 
           604,12 
          2568,48 

0,00010520 
0,00000408 
0,00000008  

 

In Table I we find the values of the mutual inductance using 
the filament method, [3]. Also the corresponding 
computational time and the absolute error of calculation 
regarding to the exact values are given.  From Table I one can 
conclude that all results obtained using the two approaches 
are in good agreement. Nevertheless, one has to make more 
subdivisions using the filament method, thus somewhat 
increasing the computational cost (the case of 500/500 
subdivisions and more). We tested three types of numerical 
integrations (Gaussian, Simpson and Lobatto) to solve the 
integrals J1n , J2n and J3n. These quadratures have been tested 
because all kernel functions are not smooth functions and 
could have oscillations on the interval of integration.  

Next example is the system of two duplicate disk-shaped 
coils,   [8] for which R1 = 7,62 (cm),  R2 = 15,94 (cm),  R3 = 
7,62 (cm),  R4 = 15,94 (cm),   zQ = 4,68 (cm),  N1=516, 
N2=516.  The formula for the mutual inductance given in [5] 
has been checked by a laboratory measurement on these disk 
coils. The measured value of the mutual inductance was 
0,0374 (H). The calculated value given in [5] is 0,0366 (H). 
The mutual inductance found by the new method was 
0,03655608 (H), and by the filament method 0,03655629 (H).  
We can see that results are in very good agreement. 

 

IV. CONCLUSION 

 
New accurate mutual-inductance expressions for two thin 
disk coils are derived and presented in this paper. This 
proposed approach has been verified by the filament method 
and laboratory measurements. The results are obtained in 
terms of complete elliptic integrals of the first, second kind, 
Heuman’s Lambda function and three terms, which have to 
be solved numerically using the single integration. We tested 
three types of numerical integrations because to evaluate  the 
accuracy and the computational cost. Even thought one might 
think that the proposed method is ‘tedious’ because of special 
elliptic integrals and some terms that have to be solved using 
one of the numerical integrations schemes, we have 
developed fast procedures to easily calculate the mutual 
inductance of the treated configurations. The results are in 
very good agreement with already published data. 
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Abstract�We briefly outline the use of spheroidal functions in 
extrapolation of the external field of magnetic sources. The ex-
trapolation is carried out by means of spatial harmonic analysis, 
in which the expansion functions are the spheroidal harmonics. 
An efficient method for computing external spheroidal harmonic 
functions of magnetostatic problems has been developed. The 
method can be utilized to the spatial harmonic characterization 
of magnetic sources in the prolate and oblate spheroidal coordi-
nates. The new approach minimizes numerical imprecision in a 
wide range of parameters by using the Wronski determinant as a 
recurrence basis. 

INTRODUCTION 

The effort has been motivated by difficulties in accurate 
and efficient calculation of the spheroidal harmonics in naval 
and spacecraft magnetics [1, 2]. The difficulties have also 
been predicted by F. E. Baker and S. H. Brown [3]. 

Select a coordinate system defined by the semi-focal dis-
tance (f) and the prolate spheroidal coordinates (PSC) 

1,ξ ∈ ∞[ [ , 1, 1η ∈ −[ ] , 0, 2φ π∈ [ ] .  
For an oblate spheroidal domain, select another coordinate 

system characterized by the semi-focal distance ( f! ) and the 

oblate spheroidal coordinates (OSC) 0,ξ ∈ ∞[ [! , 1, 1η ∈ −[ ]! , 

0, 2φ π∈ [ ]! . 
Laplace�s equation 2 0U∇ =  defines the scalar magnetic 

potential U of the conservative magnetic field, which is gen-
erated by the internal source outside the boundary encapsulat-
ing the source. In the PSC (or OSC) U outside the boundary 

iξ ξ=  (or iξ ξ=! ! ) is given by [4] 

( ), ,

1 0

n
m n m m n m
n c n s

n m

U c F s F
∞

= =
= +∑∑  

where the harmonic coefficients m
nc , m

ns  determine the spher-
oidal multipole image (MI) of the source, and ,n m

cF , ,n m
sF  are 

the spheroidal harmonic functions of the n-th degree and m-th 
order. 

The External Spheroidal Harmonics 
The harmonics ,n m

cF , ,n m
sF  in (1) are defined as 

PSC: ( ) ( ) ( )cosm m
n nQ P mξ η φ , ( ) ( ) ( )sinm m

n nQ P mξ η φ  

OSC: ( ) ( ) ( )cosm m
n nq P mξ η φ! !! , ( ) ( ) ( )sinm m

n nq P mξ η φ! !! , 

In addition to the associated Legendre functions of the first 

and second kind ( m
nP , m

nQ ) in (2), the modified associated 

Legendre function of the second kind ( ) ( )2 1m n m m
n nq i Q iξ ξ− +=! !  

is used in (3) to avoid complex functions and arguments of 
standard notations. Note, that we define ( )m

nP η , ( )m
nQ ξ as: 

( )2 21
m

m
n n

dP P
d

η
η

= − , ( )2 21
m

m
n n

dQ Q
d

ξ
ξ

= − . 

CALCULATION OF THE EXTERNAL SPHEROIDAL HARMONIC FUNCTIONS 

This paper focuses on practical algorithms for computing 
the spheroidal harmonics; the emphasis is on the associated 
Legendre functions of the second kind ( ( )m

nQ ξ ). 

The most advanced computational schemes for ( )m
nQ ξ  

are built on continuous fractions (CF). This approach pro-
vides stable algorithms valid for a wider range of the parame-
ters and with higher precision. Herndon, [5, 6], and Gautschi 
created an extended set of procedures for m

nP  and m
nQ  [7], 

which is similar to the most advanced modern implementa-
tions [8, 9]. The most efficient CF approach is demonstrated 
by Gil and Segura in [8], [9] and [10], where the Wronski 
determinant links of the dominant solution m

nP  to the minimal 
solution m

nQ . As a result, the application of forward recur-
rence relations for m

nP  provides good accuracy performance. 
Our method uses a series representation instead of compu-

tation of continuous fractions. Unfortunately, the hyper-
geometric series [11] is limited to 3

4 2 1.061ξ > ≈  (it also 
demonstrates oscillating behavior for certain combinations of 
n, m and ξ. The other hypergeometric series [12], which is 
valid for smaller ξ, converges very slowly and its use is im-
practical. 

To overcome these drawbacks of hypergeometric series, 
an analog of the Wronski determinant is used as a recurrence 
basis. The initial step was mainly influenced by a classical 
Hobson example for zonal (m = 0) functions ( )nQ ξ  [13]: 

 ( ) ( )( ) 1
11 1m

n n
n

Q P P Pν ν
ν
ν

∞ −
+

=
= − +∑ . 

A new series generalizes (4) for any ( )nQ ξ : 

 ( ) ( ) ( )( )11 ! 1 !mm m m m
n n

n

Q P m m P Pν ν
ν
ν ν

∞

+
=

= − + − +∑ . 
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Since, ( )m
nP ξ values are increasing with increase of n, 

the above series converges, and it converges rather quickly. 
As a result, a controllable computational scheme can be used 
as an alternative to the CF algorithms. 

Consider the ratios ( ) ( ) ( )m m m
n n nQ Pξ ξ ξΩ =  and 

( ) ( ) ( ) ( )( ), 11 ! 1 !mm m m
n n nn m n m P Pν ν νξ ν ν + + +ℜ = − + + + − + , 

then (5) can be rewritten as ( ) ( ),0

Nm m
n nνν

ξ ξ
=

Ω = ℜ , where N 

is a number of terms in the truncated infinite series. 
The computation starts with consequent calculation of 

( )m
mP ν ξ+  for ( )max[0, ]n mν ∈ −  using [14] ( n mν = − ): 

( ) ( ) ( )1, , 1,1 2 2 1 2m m m m m mP m P m Pν ν νν ν ξ ν+ + + + −+ = + + − + . 

The recurrence (6) is stable for an increasing range 
of max[ , ]n m n∈ , differing to the analog of (6) for ( )m

nQ ξ . 
Since (6) is not valid for n = m, the initializing values are 
given by ( )0 1P ξ ≡  and the relation 

( )1 2
1 2 1 1m m

m mP m Pξ+
+ = + − , which is tailored for ξ > 1 as a 

direct succession of [15]. 
The number of terms (N) is adaptively adjusted to reach a 

given accuracy of the initial ratio of the highest degree (nmax): 

max

m
nΩ . Once a desired accuracy is achieved, all terms of the 
m
nQ  set are computed consequently as 

max max max

m m m
n n nQ P= Ω , 

max max max1 1 1
m m m
n n nQ P− − −= Ω , ..., 

max 1
m m m
m m nQ P −= Ω , ( 1 1,0

m m m
n n n− −Ω = Ω + ℜ ). 

The approach also works for ( )m
nq ξ  and can be used in 

computing of the spheroidal harmonics in the OSC. 

( ) ( ) ( ) ( )( )11 1 ! 1 !n mm m m m
n n

n

q p m m p pν
ν ν

ν
ν ν

∞
−

+
=

= − − + − +∑ , 

where the modified Legendre function of the first kind is de-
fined as ( ) ( )m n m

n np i P iξ ξ−= .  

SAMPLE RESULTS AND FURTHER ENHANCEMENTS 

A calculated example of ( )m
nq ξ  for n = 10 is shown in 

Table 1. The sample results are consistent with [16]. 

TABLE 1 - SAMPLE RESULTS FOR ( )10
mq ξ  

ξ m = 0 m = 1 m = 2 

0.1 1.350137559350E-01 -1.425930470817E+00 1.513528392267E+01

0.5 2.324708238053E-03 -2.495041703345E-02 2.780342376073E-01 

0.9 6.775688269903E-05 -7.345287333435E-04 8.436004730834E-03 

A more advanced test includes the use of the addition 
theorems. The test demonstrates relative errors of order 10-15 

for the parameter ranges required by our applications, i.e. 
[1.001, 3]ξ = , 1 200n= … , and 0 20m= … . 

Further enhancements are perhaps associated with fast 

numerical algorithms for the direct computation of the field 
components. For example, the axial component of the field 
(PSC) is given by the following series ( ,n m

kw  is a coefficient) 

( ) ( ), 2 1, , 2 1,
0 1 0 0 0

n m n m n k m m n m n k m
n k s n k sn m k k

f c w F s w Fµ ∞ ∞ ∞+ + + +
= = = =

+∑ ∑ ∑ ∑ , 

where the successive use of same harmonic terms in the ex-
pansion induces a controllable computational scheme for Bx. 
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Abstract—An accurate evaluation of the magnetic field of the 
iron-core reactor coils by the finite volume method (FVM) is 
presented. The calculation scheme of FVM, with the control 
volume connected by the circumcenter of each triangular 
element, is developed. The numerical results are compared with 
those obtained by the finite element method. Good agreement is 
obtained. The main advantage of the approach proposed is that 
the formation of coefficient matrix is very straightforward 
without needing the complicated mathematical derivation. 

INTRODUCTION

The accurate analysis of the power frequency magnetic 
field inside and outside large substation iron-core reactor 
coils is essential for solving the problem associated with the 
reactor coil design and management of power system 
magnetic filed distribution. In the past years, the finite 
element method is widely used in many engineering 
applications. However, there are few papers to report 
analysis of the magnetic field of reactor by the finite volume 
method (FVM)[1]. In this paper, the magnetic field of 
iron-core reactor is calculated by FVM. The results obtained 
by FVM are compared with those calculated by ANSYS 
software with a 2D axisymmetric finite element method. 
Good agreement is obtained. 

PRINCIPLE 

Fig.1 is the model of the iron-core reactor. Due to the 
axisymmetric property of reactor structure, a cylindrical 
coordinate system of ),,( zr �  is set up. Because the current 

flowing in the coils has only 0 component, the boundary 
value problem concerned can be expressed by the vector 

magnetic potential 0),( zrA
�

 as follows.  
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The field region ABCD is discreted by a number of 
triangular elements. The control volume can be defined by 
connecting the circumcenter of each triangular element and 
the central point of each segment line in an orderly way. For 
example, the control volume with respect to 0P as shown in 
Fig.2(a) is 166211 MQMMQM �  The control volume 

equation is based on the following identical equation 
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Referring to Fig.2 (a), (2) can be rewritten as 
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where ),( zrJ
�

 is the current density of element i , i
Kp�  is 

the integral path within element i  (saying 211 MQM ) and 

i
PK  is the area surrounding by i

Kp�  and 0P . Similar with 

the approach in the finite element method, one can calculate 

Fig.1 Model of the iron-core reactor  
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Fig.2 Definition of control volume elements 
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Fig. 3 Distribution of the magnetic induction intensity

the coefficient of control volume in terms of the conception 
of the second element [1]. For example, the second element 

1K  with respect to the node 1P  of element 321 PPP , shown 

in Fig.2(b), can be calculated in the following way. 
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where u  represents ),( zrrA  for convenience, 1r  and 2r
are the distance between 1P  and the central point of 

01QM  and 03QM  respectively. By using (4), the left term 

of coefficient matrix can be formed easily. The right term of 
FVM equation group is  

� �303101211 2
1 MQPPQMPPJSJI K ������

��

(5)

By using (4) and (5), summing up the contribution of all 
elements, one can obtain the equation group of FVM, i.e., 

IKU ��                                   (6) 
After solving (6), the vector magnetic potential of each node 
is obtained and AB ��� .

NUMERCIAL EXAMPLES 

The geometrical dimension and parameter of the 
iron-core reactor can be summarized as follows: the radius 
of iron-core is 115 mm; the window height is 460 mm; the 
center distance is 390 mm; the number of air gap is 5; the 
length of air gap is 10.5 mm; the length of core pie is 50 mm; 
the inner radius of coil is 132 mm; the outer radius of coil is 
186.5 mm; the turn of coil is 68. Because the finite element 
method can give an accurate result, the results obtained by 
FEM are used as the reference data. In FEM, a 2D 
axisymmetric finite element model at 50 Hz was used. The 
ANSYS field simulator was utilized to obtain the pertinent 
results. The distribution of the magnetic induction intensity 
B  inside the iron-yoke by 2D FVM is plotted in Fig.3, and 
the reactance calculated by FEM and FVM respectively are 
listed in Tab. I. It can be seen from the Tab.I that the error of 
reactance is only 0.5% taking the result by ANSYS as a 
reference, so the agreement is very good. 

Tab. I Comparison of FVM and FEM 
terms FEM (ANSYS) FVM 

Reactance ( ) 1.5754 1.5670 

Further, the error of FVM is defined as the following way 

%100�

�

�

ANSYS

ANSYSFVM

A
AA

�                       (7) 

In the field region, the error distribution is plotted in Fig.4. 
According to Fig.4, the maximal error is 5% and the mean 
error is only 0.6%. The maximal error takes place at the 
points with 0�r . Obviously, the reason of such kind of 
error is too small ir  in (4) to obtain the accurate numerical 

value. 

CONCLUSION 

The magnetic field distribution and parameter of 
iron-core reactor is calculated by FVM. The main advantage 
of FVM is that it holds the mathematical simplicity like the 
finite difference method and also can calculate the complex 
field region with the different media and boundary like the 
finite element method. It should be noted that the quadratic 
scheme of FVM is omitted in purpose because of the length 
restriction of the paper. The quadratic scheme of FVM can 
give more accurate results than that proposed here and will 
be reported in the extended paper.  
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Abstract−−−−The “uniform” current density inside a filamentary 

(stranded) conductor must be found by a pre-processing step before the 
magnetic field produced by it can be computed. A previously-published 
method [1] for achieving this is very general, but gives a current density 
that is not solenoidal. Here, an algorithm is described for generating a 
solenoidal current density. The densities before and after applying the 
algorithm are separately used as the source in the computation of the 
magnetostatic field of a square coil. The non-solenoidal source leads to 
significant field errors; the corrected source gives the expected field. 

INTRODUCTION 

Filamentary conductors (conductors or coils made of a large 
number of fine filaments or strands) are widely used to 
generate magnetic fields, and the accurate prediction of those 
fields requires, in general, an accurate modeling of the 
conductor currents. This is particularly the case with devices 
such as deflection yokes, where the electron beam deflection 
may be quite sensitive to variations in the current distribution. 
A general-purpose magnetic field analysis program should, 
therefore, provide an accurate treatment of the currents in 
filamentary conductors. 

On the face of it, since the current density in each strand is 
well defined, there would appear to be no difficulty in 
specifying the current density vector J throughout a 
filamentary conductor. However, there are usually far too 
many filaments to be individually modeled. Instead, the 
overall shape of the conductor is defined, together with two 
cross-sectional planes (�terminals�). The current flows in  a 
�uniform� fashion from one terminal to the other, without, of 
course, passing out of any other surfaces of the conductor. 
Note that this �uniform� distribution is not the same as the 
current pattern in a solid conductor (i.e. with no strands). For 
example, in the latter case the current density is greater on the 
inside of a curve than on the outside; no such inequality 
occurs in the filamentary case. 

How can the �uniform� current density be determined? For 
certain simple cases, such as a straight length of conducor 
with constant cross-section, the answer is trivial. However, a 
general-purpose program must be able to handle arbitrary 
conductor shapes, and an algorithm is needed for this case. 
There may, in fact, be no unique solution. However, the 
method proposed in [1] seems to be very practical. An 
electrostatic problem is solved within the conductor, 
imposing a potential difference between the terminal planes. 

The resulting equipotential surfaces provide natural cross-
sections along the conductor, and are used to generate a 
current density that is uniform in magnitude over the cross-
section, and parallel to the static electric field. 

 However, a problem with the current density computed in 
this way is that it is not necessarily solenoidal. Certainly it is 
in an integral sense, because the net current flow is the same 
through each of the equipotential surfaces used in its 
construction. Also, within each element the current density in 
[1] is taken to be uniform, hence solenoidal. Between 
elements, however, there is no guarantee that the normal 
component of J is continuous. 

Why does this matter? Finite element methods for 
computing the quasi-static magnetic field solve the equation: 
 
 JH =×∇  (1) 
 
for the magnetic field (together with the divergence equation 
for flux density). This equation requires that J is solenoidal. 
Starting with a non-solenoidal J makes the magnetic field 
problem fundamentally ill-posed, and leads to unpredictable 
results. Whether the inaccuracies caused by this are large or 
small depends on the formulation chosen and on the 
particular nature of the problem being solved, but it is clearly 
unwise to base any general purpose program on the unreliable 
foundation of a non-solenoidal current density. 

Here we propose an algorithm for generating a solenoidal 
current density for an arbitrarily-shaped stranded conductor 
represented by tetrahedral elements.  

THEORY 

The starting point for the algorithm is a current density J0, 
such as might be generated by the method of [1]. It is uniform 
in each tetrahedron but non-solenoidal, i.e. its normal 
component is not continuous from one element. Next we 
define a space of solenoidal current densities on the same set 
of elements. These are also uniform in each tetrahedron, but 
are normally continuous. Such a space can be constructed 
from the curl of the Whitney edge functions: 
 ∑ ×∇=

i
iih wJ  (2) 
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where iw  is the Whitney function [2] associated with the ith 
edge and the summation is over all edges of the mesh. 
However, in (2) there are too many degrees of freedom 
because (a) the boundary conditions on the surfaces of the 
conductor are not enforced and (b) many linear combinations 
of the iw  are irrotational and hence correspond to zero J. 
The degrees of freedom are reduced in two steps, using a 
tree-cotree approach [3]. First, a tree of the edges on the 
surface of the conductor is formed, and the hi corresponding 
to these tree edges are set to zero. The hi of the cotree edges 
are found iteratively from a knowledge of the current flow 
through each boundary face (either zero for the side walls or 
a known nonzero value for the terminals). Second, a tree of 
the edges in the interior volume of the conductor is formed, 
and again the hi for these edges are set to zero. The result is 
an expression for J in terms of some known, nonzero, cotree 
values on the surface, and many unknown cotree values in the 
interior. 

In the final step, the unknown cotree values are 
determined by minimizing this functional: 

 ( )∫ −
V

o dV2JJ  (3) 

This results in a sparse matrix problem, solved by the 
conjugate gradient method with preconditioning. 

RESULTS 

Figure 1 shows one quarter of a square conductor, 
enclosed in a box of air for the purposes of computing the 
magnetic field. The boundary condition on all walls of the 
box is that the normal component of flux density vanishes.  

 
 

Fig. 1. Quarter of a square filamentary conductor. 
 
For a conductor of this shape, with a tight inner corner, 

there is quite a large difference between the current density 
that would flow if the conductor were treated as solid and the 
current density of the filamentary conductor. It is therefore 

necessary to compute a current density J0 using the method of 
[1], rather than relying on the �solid� current distribution. 
However, if J0 is used as the source for the magnetic field, 
large errors in the field can result. Fig. 2 shows the three 
components of flux density along a symmetry line (the thick 
line in Fig. 1) when a reduced scalar potential method [4] is 
used to calculate the magnetostatic field, with J0 is the 
source. The x- and y-components should be zero, by 
symmetry, yet they are not, and the Bz curve is unreasonably 
jagged. By contrast, also plotted is the Bz found by the same 
method starting from the solenoidal J, obtained from J0 using 
the algorithm described above. The x- and y-components in 
this case were negligible. 

 
 

Fig. 2. Flux density  of the square conductor, along one line. 

CONCLUSIONS 

An algorithm has been described that can generate an 
exactly solenoidal current density that nearly matches a 
given, non-solenoidal one. Solenoidality is necessary to avoid 
substantial errors in computed magnetic fields. 
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Abstract— In this paper some integral equations of
electromagnetics are reformulated in terms of differen-
tial forms. The integral kernels become double forms.
These are forms in one space with coefficients that are
forms in another space. The results correspond closely
to the usual treatment, but are clearer and more in-
tuitive. Since differential forms possess discrete coun-
terparts, the discrete differential forms, such schemes
lend themselves naturally to discretisation. As an ex-
ample, a boundary integral equation for the double
curl operator is considered. The discretisation scheme
generalises the well-known collocation technique by
using de Rham maps.

Index terms— Boundary element methods, differen-
tial forms, integral equations.

I. Introduction

In the recent years, a remarkable amount of papers has
been published that treat continuous and discrete electro-
magnetics in terms of differential forms (DF). For a good
account on this topic see e.g. [1]. However, most of these
papers focus on (generalised) finite difference and finite
element methods (FEM). There are only rare papers that
deal with the boundary element method (BEM) [2]–[4].
The aim of the present paper is to show how the integral
equations of electromagnetics can be expressed in the lan-
guage of DFs. Since DFs possess discrete counterparts,
the discrete DFs, such schemes lend themselves naturally
to discretisation. We restrict ourselves to the static case.
Similar schemes can be derived for time dependent prob-
lems.

Let Ω ⊂ E3 be an open domain of the three-dimen-
sional affine-Euclidean space E3 whose sufficiently smooth
boundary is denoted by Γ. We consider the generic second
order equation

δdα = ∗η in Ω, (1)

where α is a p-Form, η is a (3-p)-Form, p=0,. . .,2.
Moreover, d denotes the exterior derivative, δ the co-
derivative, δω = (−1)deg� ∗ d∗ω, and ∗ the Hodge oper-
ator of the Euclidean metric. The boundary conditions
shall be represented by trace operators γ−

Dα=t−α=β,
γ−
Nα=t−∗ dα=γ, where γ−

D , γ−
N are the interior Dirich-

let and Neumann traces, respectively, t− is the standard
interior trace operator, and β, γ are the Dirichlet and

Neumann data. Note that β is a p-form and γ is a (2-p)-
form that are defined on Γ.

For p=0, (1) is the Laplace equation, and we can iden-
tify α with the electric scalar potential, β with its value
on Γ, −ε0γ with the normal component of the electric
displacement on Γ, and ε0η with the charge density. In
contrast, p=1 yields the double curl equation, where α
can be seen as the magnetic vector potential, β as its
tangential component on Γ, γ/µ0 as the tangential com-
ponent of the magnetic field on Γ, and η/µ0 as the current
density.

By applying the exterior derivative to the Neumann
data and taking into account (1) we find

dγ = dt−∗ dα = t−d∗ dα = (−1)p+1t−η. (2)

This condition is fulfilled trivially for p=0, since there are
no non-trivial 3-forms on surfaces. For p=1 (2) means
that a possible normal current density t−η/µ0 through
Γ must be consistent with the tangential magnetic field
γ/µ0 such that Ampère’s law is satisfied.

At this point it is useful to introduce double forms [5].
These are forms in one space with coefficients that are
forms in another space, or DF-valued DFs [6]. The double
forms to be used here are associated with E ′

3 ×E3, where
E ′

3 is the observation space and E3 is the source space.
Subsequently, all operators which refer to the space E ′

3

are denoted by a prime. A double form can be used as
a transformation kernel. If we fix a double p-form Kp,
we have the transformation from E3 to E ′

3 given by the
volume integral ω ′ =

∫
E3

Kp∧∗ω, where ω is a p-form and
ω ′ is the transform of ω due to the kernel Kp, provided
that the integral exists.

The Green double form Gp for (1) satisfies δd Gp=Ip,
where Ip is the identity kernel [6]. By pre-multiplying (1)
by Gp, integrating over Ω and performing integration by
parts twice we end up with the following representation
formula

α ′ =
∫

Γ

(γ−
DGp)∧γ − (−1)p

∫
Γ

(γ−
NGp)∧β +

∫
Ω

Gp ∧η. (3)

The first integral is the single layer potential ΨSL(γ), the
second one the double layer potential ΨDL(β), and the last
one the Poisson integral. Eq. (3) encompasses the usual
scalar and vector representation formulas known from lit-
erature.

For the sake of simplicity, we restrict ourselves to η=0.
By applying γ−

D
′ to (3) and taking into account the defini-
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tions V =γ−
D

′ ◦ΨSL and K= 1
2 (γ−

D + γ+
D) ′ ◦ΨDL we obtain

the boundary integral equation

1
2β ′(x ′) = V (γ)(x ′) − K(β)(x ′) (4)

for smooth boundary points x ′, where γ+
D is the exterior

Dirichlet trace [7]. Eq. (4) can be generalised to the non
smooth case as well.

II. Discretization

It is well known that Ampère’s and Faraday’s law might
be discretised on dual grid systems, and that the coupling
of these is accomplished by material matrices, which can
be seen as discrete Hodge operators [1, Sect. 3.3]. Each
time a hodge operator is applied this should be associated
with a change of the grid on the discrete level. We there-
fore state that α and β should be allocated on one grid,
but γ and η on the other. Note that the discrete counter-
parts of the exterior derivative and of the trace operator
t act on identical grids, respectively.

In this paper, we wish to highlight a discretization
by so called de Rham maps [3]. Technically, this sim-
ply means that (4) is integrated over nodes (p=0, point
evaluation) or edges (p=1) of the grid that is associated
with β. Applying the appropriate de Rham map to (4),
where the unknown surface DF is taken from a space of
Whitney forms, instantly provides us with a discretiza-
tion, see Table I. The boundary integral operators give
rise to matrices Vh, Kh. Moreover, the matrix applied to
the d.o.f. vector of the unknown quantity turns out to be
square. We observe that Vh provides a mapping between
dual grids, while Kh acts on the same grid.

For p=0 we obtain the well known collocation tech-
nique. This gives a geometrical explanation for the
common practice to use piecewise linear shape functions
(Whitney-0-forms) for the Dirichlet data but piecewise
constant shape functions (Whitney-2-forms) for the Neu-
mann data.

For p=1 the de Rham maps generalise the collocation
technique. Considering the Neumann problem, β is dis-
cretised by Whitney-1-forms, i.e. linear edge elements,
and (4) is enforced for the integrals over the primal edges.
Regarding the Dirichlet problem, it can be shown that

TABLE I
DISCRETISATION OF THE BOUNDARY INTEGRAL EQUATION ON

DUAL GRID SYSTEMS BY DE RHAM MAPS.

Problem type Dirichlet Neumann
Operator to be
inverted

Single layer
V

Double layer
K

Unknown data
on primal grid

Neumann
�

Dirichlet
�

p=0 face based nodal based
p=1 edge based (closed) edge based

de Rham map
(collocation) on

dual grid primal grid

p=0 nodes nodes
p=1 edges (cycles) edges

node,
dual face

dual node
face,
primal

primal

Fig. 1. Barycentric dual grid systems for the discretisation of the
Dirichlet problem (black: primal grid, grey: dual grid).

the condition (2) has to be included into the construction
of the space for γ. Otherwise the operator V fails to be
elliptic and convergence cannot be taken for granted any
more [8]. We restrict ourselves to the case η = 0, where
the condition (2) reduces to dγ = 0, i.e. γ is a closed DF.

One possibility to remedy this problem is the introduc-
tion of a scalar magnetic potential ψ defined on Γ [8]. In
case of a trivial topology, dγ = 0 implies γ = dψ. On the
discrete level, γ is represented by the discrete surface gra-
dients of Whitney-0-forms. On the dual side, we propose
to restrict the collocation to closed 1-chains, i.e. cycles,
and these can be obtained similarly as the boundaries of
dual faces, see Fig. 1 right. Physically, this means that the
residual flux through any surface on Γ which is composed
of dual faces vanishes. In case of a nontrivial topology
additional basis forms and basis cycles related to the first
(co-)homology group of Γ have to be augmented [9].

As an example, a permeable sphere in the field of a
circular current loop will be considered. For µ → ∞ (re-
spectively µ → 0) this yields an exterior Neumann (re-
spectively Dirichlet) problem of the double curl equation,
where an analytical solution is available as a reference.
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  Abstract ─Recently, higher areal recording density of hard disk 
drive(HDD) is achieved by increasing not only linear density(BPI) but also 
track density(TPI). Then, 3-D read/write(R/W) simulation is necessary in 
order to design high-density recording system by utilizing magnetic field 
analysis. In this paper, 3-D R/W simulation system using the edge-based 
finite element method is developed by introducting the 3-D medium 
hysteresis model based on the ensemble of the Stoner-Wohlfarth (S-W) 
particles. As it is not easy to apply the Newton-Raphson method for the 
nonlinear analysis of S-W model, an under-relaxation iteration method is 
used. The effectiveness of the 3-D R/W simulation system is illustrated by 
applying to the magnetic field analysis of a SPT(single-pole-type) head/DL 
(double-layer) medium perpendicular recording system.

I. INTRODUCTION

The increase in areal density of magnetic recording for HDD 
is remarkable over the last several years. In order to develop 
higher density recording system, CAD utilizing the magnetic 
field analysis is indispensable. As the higher areal recording 
density is achieved by increasing not only BPI but also TPI, 
3-D R/W simulation is necessary to calculate the flux 
distribution in the track direction[1]. 

In this paper, 3-D R/W simulation system using the 
edge-based finite element method is developed by introducing 
the 3-D medium hysteresis model using the Stoner-Wohlfarth 
(S-W) partcles[2]. The problems in developing 3-D analysis is 
examined, and the application is shown to the analysis of a 
SPT head/DL medium perpendicular recording system. 

II. SIMULATION METHOD

  The 3-D R/W simulation system was developed by solving 
the Maxwell's equation for the head-medium system using the 
edge-based finite element method[3] and a hysteresis model of 
the medium based on the ensemble of the Stoner-Wohlfarth 
(S-W) particles[2]. In the S-W model, the easy axis of each 
particle is distributed according to a Gaussian distribution in 
3-D space, and the M-H loops for the medium was calculated 
by taking account of the history of each S-W particle(switched 
or unswitched). Since it is not easy to apply the 
Newton-Raphson method to the nonlinear analysis of the 
medium, the Newton-Raphson method was employed only for 
the head, and an under-relaxation iteration method was applied 
for the medium. 

The flow chart of the 3-D R/W system developed is shown 
in Fig.1.  First, the whole domain of the model is discretized 
using a hexahedral element, and the material parameters and 
their initial values are set for the head-medium system. Then, a 
linear equation system for the model is made using a finite 
element method. After that, the linear equation system is 
solved using the Newton-Raphson method for the head, and an 
under-relaxation method for the medium. In the write process, 
the calculation process is repeated by shifting the medium and 
the recording current until the last step is reached. Furthermore, 
removing the head after the last step, an extra-calculation is 
carried out to obtained the final recorded magnetization. On the 
other hand, in the read process, the recorded magnetization is 
set at the first step instead of the recording current, and the 
similar calculation is repeated and the magnetic flux through 
the MR sensor element is calculated to obtain the read voltage 
waveform for the recorded magnetization.  

III RESULTS AND DISCUSSION

In order to test the 3-D R/W simulation system developed, 
the R/W simulation was performed on a SPT head/DL medium 
perpendicular recording system shown in Fig.2. The SPT head 
is composed of the main pole of 0.4 μm thickness and 0.1μ
m track width. The thicknesses of the recording layer and the 
soft magnetic under-layer of the DL medium are 20 nm and 
100 nm, respectively.  Furthermore, the spacing between the 
head and the medium is assumed to be 15 nm and the 
recording density is about 3.5 Gb/in2.

Fig.3 shows the M-H loops for the recording layer used for 
the R/W simulation calculated by the S-W model assuming the 
Gaussian distribution of an average anisotropy field Hk= 477 
kA/m and its standard deviation △Hk= 40 kA/m. Fig.4 shows 
the 3-D mesh for the SPT head  used in the present simulation. 
The number of elements is  30636 for the write process and 
25200 for the read one in total. 

Fig.5 shows the recording current waveform and the 
recorded bit pattern. As shown in Fig.5, the magnetization is 
recorded perpendicularly bit by bit. Fig.6 shows the 
reproduced voltage waveform for the recorded magnetization 
with MR head. The CPU time for this R/W simulation is about 
4 hours in the write process and about 1.5 hours in the read 
process(41 steps) using the Pentium 2.53 GHz with 1GB 
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memory of PC(OS Windows XP). 
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A b st ra ct  - In this paper, an improved formulation of the Element 
Free Galerkin method (EFGM) is proposed for electromagnetic field 
computation. Detailed research is conducted on some key problems, 
such as the selection of the weight function, the treatment of imposing 
boundary conditions and interface conditions. Finally, numerical 
examples are cited for demonstration. 

I. INTRODUCTION 

In the finite element method (FEM), mesh generation is a 
far more time-consuming and expensive task than the 
assembly and solution of the finite element equations. 
Moreover, there are certain classes of problems for which the 
finite element method (FEM) is difficult, or even impossible 
to be applied. For example, in electromagnetic filed 
computation, with regard to thin plate problems, narrow air 
gap problems, moving conductors, cracks, etc., FEM usually 
requires remeshing in order to insure equality. Therefore, the 
huge computation time can be experienced during numerical 
analysis. For such problems, developments of advanced 
methods that do not rely on meshing are very advantageous. 

The Element Free Galerkin Method (EFGM) is a method 
to obtain differentiable approximate function in the domain 
using known function values on discrete points through 
weighted least squares fitting. In this paper, the authors 
present successful complements of the element-free Galerkin 
method for electromagnetic filed computation. First, a weight 
function suited electromagnetic filed is given. Second, a 
penalty function is constructed in order to deal with essential 
boundary conditions. Thirdly, the treatment of interface 
between regions with different materials is also discussed. 
Finally, an application of the EFGM is presented and the 
numerical results are also given.  

II. CHOICE OF WEIGHT FUNTION 

The weight function plays an important role in the 
performance of the method. It can exert a tremendous 
influence on the accuracy of solution, the amount of 
computation and the rate of convergence. In this paper, the 
weight function is selected as follows: 
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where iir xx ��  is the distance between the two points 

ix  and x ; mir  is the influence radius of ix ; �  is a small 
positive value; k  is a positive integer. 

Moreover, if the weight function )(xiw  is continuous 
together with its )1( �k  derivatives, the shape function 

)(xiN  is also continuous together with its )1( �k  
derivatives. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
As can be seen in Fig. 1., the cells do not depend on the 

node disposition and they are simpler than the ordinary finite 
element mesh. On the other side, the integration is performed 
at each integration point of a simple integration cell. The radii 
of influence mir define the domain of influence of each 
integration point.  

III. PENALTY FUNCTION  

One of the biggest problems in the implementation of 
EFGM resides in that the used approach is not an 
interpolation. This implies that imposing the essential 
boundary conditions is very difficult. Some methods provide a 
means of overcoming the inherent difficulties, such as 
Lagrange multipliers[1], modified variational principles[2], 
coupling with finite element[3]. However, Lagrange multipliers 
pose difficulties in that the resulting stiffness matrix is no 
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longer positive definite or banded. Modified variational 
principles are less accurate and rather inconvenient. Coupling 
with finite elements can result in discontinuities in the 
derivatives of the approximations. 

In this paper, a penalty function for electromagnetic filed 
computation is first given. With the penalisation method, we 
can obtain positive definite and banded stiffness matrix, which 
the size of problems is decreased. Further more, the results are 
very accurate. 

We consider the following two-dimensional problem on 
the domain �  bounded by � : 
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The equivalent variation form of the above equation is 
posed as follows: 
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With regard to two-dimensional problems, U  is the 
potential on one surface, )(xu  is the potential at the point 
x and C  is a penalty number, then the energy in the domain 

can be expressed as follows: 
When �  reaches its minimum, )(xu  approximates to 

U . 
Therefore, the total potential energy of the domain can be 

expressed as follows: 
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Based on the law of minimum potential energy, the final 
discrete equations can be obtained through the derivative of 
function )(uI  with respect to iu : 

FSU � .                      (6) 
It should be pointed that this penalty function term is first 

put forward in electromagnetic filed computation. 

IV. INTERFACE CONDITION APPROXIMATION 

Electromagnetic problems generally involve interfaces 
between different materials. This results in discontinuities of 
the magnetic induction tangential components when passing 
from a material to another. Therefore, it is necessary to 
introduce these discontinuities in the weight function. In this 

paper, the visibility criterion is used. The effort to implement 
this technique is not very big, as can be seen in [4]. 

V. APPLICATIONS 

Fig.2 shows the geometry of a simple two-dimensional 
magnetic problem. This problem has analytical solution and it 
is used to evaluate the EFGM precision. Which, 01 10�� �  
, 02 10000�� � , 2001 �� , 1002 �� . We can solve easily 

the magnetic potential (� ), and the results are given in Table 
I. 

Although the example is simple, it tests some essential 
characteristics of EFGM, such as the treatment of essential 
boundary conditions and the interface between regions with 
different materials.  
 
 
 
 
 
 
 
 
 
 
 

TABLE I. COMPARISON OF NUMERICAL SOLUTIONS BY EFGM WITH 
ANALYTICAL SOLUTION 

Point (cm) Analytical solution  EFGM solution 
(1.0,0.0) 150.0749 150.075 
(2.0,0.0) 100.1498 100.15 
(3.0,0.0) 100.0999 100.1 
(4.0,0.0) 100.0493 100.05 

VI. CONCLUSION 

As an effective complement method to FEM, EFGM can 
solve problems that FEM cannot solve effectively, such as the 
tiny gap problems and the thin board problems. Furthermore, 
being a potential method, EFGM will be widely applied to 
solving the electromagnetic problems along with the further 
study. 
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Abstract – The aim of the study is to find a method to model
electromagnetic devices which generate consequent magnetic leakage.
Classical methods have proved to be efficient but time consuming. The
method proposed in this article is based on the Magnetic Moment
Method (MMM). We first introduce MMM and present a comparison
with Finite Element Method in transient conditions. Then, a
methodology to obtain a simplified MMM model is described. Beside the
respectable accuracy, the simplicity of the model makes it possible to
consider more complicated studies with reasonable resolution times.

 INTRODUCTION

The study aims to contribute  to the modeling of
electromagnetic devices containing closed magnetic circuits,
in particular current transformers. The difficulty of the
problem is the quick saturation caused by high primary
currents.

&ORVHG�PDJQHWLF
FLUFXLW

3ULPDU\
FRQGXFWRU

6HFRQGDU\
FRQGXFWRU

Fig. 1–Description of the studied device with closed magnetic circuit : a
current transformer

The Finite Element Method (FEM) applied to such devices
gives results with a good accuracy [1]. However, the method
is time consuming. The Reluctance Network Method [2] has
also been tested but is limited by the appearance of 3D
magnetic leakage which is difficult to determine and to
describe in a reluctance network (RNM) [3]. For these
reasons, the study was then focused on another method, which
gathers speed of simulation and saturation compatibility : the
Magnetic Moment Method (MMM) [4].

After a short introduction to MMM, transient state results
and comparison with FEM are presented so as to validate the
application to current transformers. Then, a non conventional
coupling between MMM and Reluctance Network Method is
presented in order to generate a simple model of our sensor.

INTRODUCTION TO MAGNETIC MOMENT METHOD

Principle

Let us consider N ferromagnetic elements with uniform

magnetization vectors Mi (i=1,2..N) and call Hi the field
strength in the center of the ith element. Hi is the superposition
of an external field Hex,i (created by inductors for example)
and of the magnetic field produced by each element. We can
write [5]:

iexj

N

j jii HMgH ,1 , )( += ∑ =
    i=1,2..N ( 1 )

where gi,j defines the matrix relation between the field in the
center of the object i, created by the object j, and the
magnetization vector of the object  j.

Concurrently, in a ferromagnetic element, magnetization
vector Mi evolves relatively to the magnetic field Hi. The
relation is given by the material characteristic :

)( ii HfM =     i=1,2..N ( 2 )

Eqs. ( 1 ) and ( 2 ) describe the studied problem. Their
simultaneous resolution with a relaxation procedure leads to
the solution.

The restriction of the modeling to the sources and
ferromagnetic elements of the problem has a consequent
effect on computing time and facilitate parameterization

RADIA software, which is developed by researchers of the
ESRF, has been chosen for the study. Radia [6] is a powerful
3D magneto-static implementation of the MMM .

Magnetic Moment Method Application

The pertinent information when studying current
transformers is the secondary coil response I2(t) to a primary
excitation I1(t). As Radia implementation of MMM is limited
to static simulations, MMM secondary current signals are
reconstructed using a response surface approach [7]. Due to
configuration, eddy currents are neglected.
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Fig. 2– Temporal secondary current signal for a saturating magnetic circuit.
Comparison between experimental, FEM generated and MMM coupled with
response surface generated signals.
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Fig. 2 compares experimental temporal secondary current
with MMM and FEM. As can be seen, MMM reconstructed
signal gives fair results.

SIMPLIFIED MAGNETIC MOMENT METHOD COUPLED WITH RELUCTANCE

NETWORK METHOD

Principle

The aim of this part is to generate a simplified magnetic
moment method based model with very few elements.

This approach is tested on the studied transformer which is
subdivided in four elements (due to symmetry). Magnetic
field in the center of each bloc can be expressed as follows :

∑∑ ⋅+⋅=
=

2

1

4

1

jij

k

kiki IMH βα  i=1,2..4 ( 3 )

where coupling coefficients αik and βij define the relation
between one source (I or M) and its effect in the studied
element. These coefficients can be calculated with analytical
formulas. Authors prefers FEM resolutions as a first step.

Concurrently, magnetization vector Mk in an element can be
deduced from magnetic field by using the material
characteristic curve Mk(Hk) ( 4 ).

Simultaneous resolution of equations ( 3 ) and ( 4 ) with a
relaxation process makes it possible for a given couple of
currents (I1, I2)  to determine a magnetic state of the device,
for which can be deduced the flux under the secondary coil.

Reconstruction of the secondary signal employing this
simple method is presented on Fig. 3. Results are very
interesting relatively to the simplicity of the model.
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Fig. 3– Temporal secondary current signal for a saturating magnetic circuit.
Comparison between experimental, FEM generated and four element MMM
coupled with response surface generated signals.

However, reducing the number of elements used by MMM
implies the non-respect of magnetization uniformity
hypothesis in each bloc and induces error. Even though this
error is small when studying static saturated devices, it is
necessary to correct the model so as to have reliable results in
other cases.

The idea is to use Reluctance Network Method, well-known
for its accuracy in linear cases, to adjust the model.

Results

Fig. 4 presents variations of induction in the center of one
element when I1 varies and I2 is kept to zero. We can verify
that the correction of MMM parameters with RNM makes it
possible to correct MMM results for linear use.
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Fig. 4– Induction in the center of the first element of the model versus
primary current (I2=0) for  corrected MMM static resolutions. Comparison
with non corrected MMM, RNM and FEM.

CONCLUSIONS AND PERSPECTIVES

This paper presents an application of Magnetic Moment
Method  to current transformers. The method proves to be
appropriate for  steady state modeling of closed magnetic
circuits. Moreover, resolution times are much shorter than
with Finite Element Method.

The originality of the last part of the work is MMM and
RNM coupling approach in order to generate simple static
MMM based models. Very encouraging results can be
obtained with a four element model corrected with RNM.
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Abstract— Ferrite inductors in practice will be excited
very often by an impressed voltage of known signal form,
while general the inductance values depend strongly on
the current flowing during operation. Due to the nonlin-
ear behaviour of such magnetic devices, the arising current
enforced by the driving voltage is not known in advance.
A way how to find the associated currents with the aid
of FEM-computations will be shown in this paper. On a
lifelike ferrite inductor the proposed way will be demon-
strated. Once the u/i-characteristic has been found, the
inductor can be implemented in a network model to simu-
late any kind of operating state.

Introduction

Non-linear inductor devices find a large application
area. Especially, the voluminous and lossy transformers in
mains adapters have been replaced by switch-mode power
supply devices. Numerously, its operating range runs from
nearly no-load condition to full load. The basic principle
of a switch-mode power supply is shown in Fig. 1.

Fig. 1. Basic principle of a switch-mode power supply.

The switch S controls the output voltage Uout by vari-
ing the ratio between switching-time on and off, ton and
toff , according to (1):

Uout = Uinp
ton

ton + toff
. (1)

In case of the switch S to be closed (ton), the current IL

through the inductor increases, depending on the induc-
tance value L. After switching off, the current flows over
the diode D (during toff ). Thereby a large inductance
value L limits the decrease of IL. This is important, es-
pecially for low load conditions. To avoid a current flow
interruption, a large value of L is required. So we need an
inductor with large L-values at low currents.

Generally, magnetic circuits with small air gaps show
high inductance coefficients at low magnetic excitation.

Due to the saturation of the core the L-values decrease
very rapidly at higher currents. Curve 1 in Fig. 2 shows
this behaviour. Devices with large air gaps have more or
less constant but low L-values over a wide range of the
current I, as indicated in curve 2. To get an inductor
with the above mentioned requirements a combination of
curve 1 and curve 2, like curve 3 in Fig. 2 is in demand.

Fig. 2. L(I)-Characteristic of magnetic circuits with different air
gaps.

In order to achieve an inductor with an L(I)-
characteristic like curve 3, the ferrite core of an inductor
may be manufactured as shown in Fig. 3. Two identi-

Fig. 3. Magnetic core with demanded L(I)-characteristic.

cal halves of a mantle shaped core may be fitted together
without air gap. In the middle of the core carrying the
main magnetic flux, a nut can be inserted. The vicinity
of this region will be saturated distinctly earlier than the
remaining core. Designing size and shape of the nut may
be a matter of an optimization process.
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Numerical model

A 3D-FE model of the magnetic circuit shown in Fig.
3 has been developed. A static magnetic field formula-
tion with the magnetic scalar potential Ψ [1],[2] and the
reduced magnetic vector ~Ar [3] has been applied. ~Ar has
been used to describe the field in the coil region and the
core region, whereas the field elsewhere will be expressed
with the magnetic scalar Ψ. The field quantities can be
expressed by:

~H =
1
µ
∇× ( ~Ar + ~Ae), (2)

with the vector potential ~Ae coming from the current run-
ning through the coil. For the remaining region in air
follows

~H = −∇Ψ. (3)

The reason for using the magnetic vector potentials can be
found in the necessity of computing the voltage induced
in the coil without derivating the computed quantities.
Following Faraday’s Law yields to

u =
∮

s

~E · d~s = − ∂

∂t

∮
s

( ~Ar + ~Ae) · d~s. (4)

Now, being able to compute the voltage induced of the
non-linear magnetostatic problem, a step by step proce-
dure can be applied to find the current enforced by the
driving voltage.

Step by step procedure

The magnetic non-linearity enforces a discretization of
the voltage signal in time, as shown in Fig. 4. For each

Fig. 4. Time discretization of the driving voltage.

time step k, a current Ik through the coil must be assumed
and the non-linear field problem has to be solved by finite
elements. Afterwards, the voltage induced has to be com-
puted, according to (4). Now the computed value can
be compared with the given voltage value uk at tk. The
assumption for Ik must be adjusted untill a predefined ac-
curacy has been achieved. Thereafter the next time step
k + 1 can be considered. Additionally, the current depen-
dency of the non-linear inductance L(Ik) can be found by

evaluating Faraday’s Law

u(tk) = L(Ik)
4I(tk)
4t

. (5)

Numerical results

The ferrite core shown in Fig. 2 has been investigated
whereby the procedure suggested above has been applied.
Fig. 5 shows the obtained dependency L(Ik). A slightly

Fig. 5. L(Ik)-characteristic of the core investigated.

corrugated run of the curve must be observed. It can be
smoothed by selecting smaller intervals 4t so that the
increments 4I(tk) in (5) become smaller as well. The
B−H-characteristic corresponds to a ferrite material N67
at an ambient temperature of 20◦ Centigrade and is taken
from [4]. Wideness and depth of the nut immersed in the
core of 9 mm of diameter amount to 1.75 mm and 1.95
mm, respectively.

Conclusion

The quite frequently case of the voltage excitation of
magnetic non-linear devices has been treated. Special at-
tention has been focused on finding the currents associ-
ated to the driving voltage. Therefore a step by step time
scheme for the FE-computations has been discussed. In
addition the non-linear dependence of the inductance L
from the current could be constituted. Once this charac-
teristic has been found, the non-linear behaviour of the
ferrite inductance can be implemented in a network, in
order to simulate the wide range of operating conditions.
On a ferrite core the procedure suggested has been proven.
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Abstract � Power transformer analysis and design focussing on the 
equivalent circuit parameter evaluation by magnetic field numerical 
calculation is presented. The proposed method adopts a particular 
reduced scalar potential formulation enabling 3D magnetostatic problem 
solution. This method, necessitating no source field calculation, in 
conjunction with a mixed finite element –boundary element technique, 
results in a very efficient 3D numerical model for power transformer 
design office use. Computed results are validated through 
measurements. Such a methodology is very promising for investigation 
concerning losses and short circuit voltage variations with the main 
geometrical parameters. 

MODELING TECHNIQUES 

Numerical modeling techniques are now-a-days well 
established for power transformer analysis and enable 
representation of all important features of these devices [1,2]. 
More particularly, techniques based on finite elements present 
interesting advantages for nonlinear characteristics 
simulation. The leakage inductance evaluation has been 
extensively analyzed [10], as well as eddy current loss in 
transformer tank walls [7,8], iron lamination characteristics 
and design considerations [9]. Moreover, the combination of 
boundary and finite elements is widely used for 
electromagnetic problems since the electromagnetic field is 
not only confined to the conductors but it expands over 
extensive parts of air, where the use of a boundary element 
representation can significantly decrease the computational 
effort [5,6]. 

In the present paper a particular scalar potential 
formulation has been developed, enabling the 3D 
magnetostatic field analysis. According to our method the 
magnetic field strength H is conveniently partitioned to a 
rotational and an irrotational part as follows [3]: 

 
��� -KH  

 
where � is a scalar potential extended all over the solution 
domain while K is a vector quantity (fictitious field 
distribution), defined in a simply connected subdomain  
comprising the conductor, that satisfies Ampere's law and is 
perpendicular on the subdomain boundary. 

The boundary element method is derived through 
discretization of an integral equation that is mathematically 
equivalent to the original partial differential equation. The 
boundary integral equation corresponding to Laplace equation 
is of the form: 

 

 

where s is the observation point, s' is the boundary Γ 
coordinate, n' is the unit normal and G the fundamental 
solution of Laplace equation in free space. Therefore, the 
matrix form of the equations corresponding to a coupled finite 
element/boundary element solution domain is of the form 
[5,6]: 
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where [S] and [F] are the FEM matrices, [H] and [G] the 
BEM matrices while Tij are the terms used to link the FEM to 
the BEM region.  

RESULTS AND DISCUSSION 

The proposed reduced scalar potential formulation has been 
applied in the 3D numerical analysis of a transformer under 
short circuit for its leakage reactance calculation. The case of 
the one  phase  part of a  1000 kVA,  two tap 20-15kV / 400V  
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Fig. 1. Active part configuration of the three phase shell type distribution 
transformer considered. 

 
Fig. 2. Perspective view of the one phase transformer part modelled. 

 
 
Fig. 3. Magnetic flux density magnitude distribution during short-circuit test 

 
three phase shell type power transformer, shown in Fig. 1, has 
been considered. Fig. 2 illustrates the perspective view of the 
one-phase transformer part modeled. 

The field values computed by the proposed 3D formulation 
have been compared to those measured by a Hall effect probe 
during short-circuit test. Fig. 4 gives the variation of the 
perpendicular flux density component Bn along  the  line  AB, 

Bn along the line AB 
short-circuit at 20 kV
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Fig.4. Comparison of measured and computed field values along the line AB. 

 
positioned as shown in Fig. 2, in case of short-circuit with the 
high voltage winding connections corresponding to 20 kV 
voltage supply. This figure illustrates the good correlation of 
the simulated results with the local leakage field 
measurements. 
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Abstract– The paper deals with a procedure for the computa-
tion of the magnetostatic field in vacuum. A very short summary
of the most currently used methods for the field computation is
given first, and their limits of applicability and drawbacks are
recalled, then a mixed analytical-numerical method is presented
which makes use of the analytical solution of Biot-Savart’s integral
for simple elementary geometries. The method permits to obtain
an accurate solution for a wide set of field source geometries even
when the field is computed inside the sources.

I. INTRODUCTION

In a wide set of magnetostatic problems, in presence of a uni-
form magnetic permeability, the magnetic induction B, or the
vector potential A can be determined straightforwardly solving
the Biot-Savart’s integrals:

A = µ0

4π

∫
τ

J
r
dτ (1)

B = µ0

4π

∫
τ

J× r
r3

dτ (2)

Where τ is the field source volume, i.e. the space domain
where the current density vector J is present. In a computer
code, the direct numerical integration of (1) or (2) can be very
time consuming, due to the large number of sample points
sometimes required, and can lead to unacceptable errors when
the field is computed inside the source, due to the well-known
singularity of the integrand function. This last aspect can be
critical, especially when the self and mutual inductance coef-
ficients between field sources, or the self-field electromagnetic
forces are computed.
For some types of source geometry and current density distri-
bution, τ can be approximated as a set of adjacent space re-
gions for which an analytical solution of these two integrals
exist. Some formulas give the field generated by these simple
elementary source geometries, as reported for instance in [1],
[2], [3]. In this case the total field is a simple sum of the finite
contributions of these elementary sources.
Another approach is reported in [4], where the volume integral
(2) is replaced by a surface integral over the source boundary.

Again, for some elementary geometries, an analytical expres-
sion of this surface integral exists, therefore (2) can be replaced
by a sum of the contributions from a finite number of elemen-
tary boundary surfaces. To the author’s knowledge, no trans-
formation of the volume integral (1) in a surface integral is
available, therefore this procedure is not applicable when, for
instance, the self and mutual inductance coefficients between
coils are to be computed.
When the field sources have a non uniform current density, or
their geometry does not permit an efficient representation in
terms of elementary sources, the numerical integration is the
only way left. In some cases, however, a mixed analytical-
numerical approach can still be followed: the field is computed
starting from the contribution of monodimensional or bidimen-
sional source subdomains of τ (like filaments or thin sheets), for
which an analytical solution exists; this contribution is then nu-
merically integrated, to complete the volume integration. Com-
pared with the direct integration of (1) and (2), the advantage
of this procedure is that, usually, in this way not only a shorter
computation time is needed, but also a lower singularity level,
or no singularity at all is present for the integrand function,
when the point P is inside the source.

II. FIELD GENERATED BY A UNIFORM CURRENT DENSITY

DISTRIBUTION

In order to develop an automatic computer procedure for the
3D magnetic field computation, we started our analysis with
a general approach, considering the magnetic vector potential
A generated by a general-shaped space region τ ∗ in which a
uniform current density J is present. This region can be mono-,
bi- or three-dimensional, and the physical dimension of vector
J changes accordingly. Within this hypothesis, (1) becomes:

A (P) = J
µ0

4π

∫

τ∗

1

r
dτ = µ0

4π
J · � (

τ ∗, P
)

(3)

� (τ ∗, P) is a function of the location P where the field is to
be computed and the location, geometry and orientation of the
source, τ ∗. From (3), the magnetic induction in P can be easily
obtained:

B (P) = −µ0

4π
J× gradP

[� (
τ ∗, P

)]
(4)
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Fig. 1. 2D rectangular current slab. The current density vector J can have
whatever orientation with respect to XYZ axes.

The gradient in this formula is to be computed with respect to
the point P coordinates.
To achieve enough flexibility of the sources representation,

we found the analytical expression of � (τ ∗, P) and its gradient
for a set of important elementary geometries. As an example,
for the 2D rectangular thin slab represented in Fig. 1, for which
a 2D current distribution is assumed, grad

[� (τ ∗, P)
]
is:

grad
[� (

τ ∗, P
)] =

2∑
i = 1
k = 1

(−1)i+k



− log |wk + rik |
tan−1

(
uiwk
v1rik

)
− log |ui + rik |


 (5)

where P ≡ (x, y, z), ui = xi −x , wk = zi − z, v1 = y1− y and
r2ik = u2i + v21 +w2k , as defined in [3]. When the current density
J is parallel to z axis, one can find from (4) the expression of B
reported in [3].
The analytical expression of � (τ ∗, P) for a source subdomain,
can be numerically integrated along the other coordinate(s).
As an example, if the source segment highlighted in Fig. 2A
is considered, in which a uniform current density is supposed
to be present, the field can be computed considering the 2D
source cross-sections, whose contribution is numerically inte-
grated along the longitudinal source coordinate s1, as sketched
in Fig. 2B. At each s1 value, the cross-section sizes and orien-
tation change, as well as the angle between the current density
and the surface.

A)

B)

s1

�

Fig. 2. A): 3D source segment with a uniform current density. B): view of the
surfaces considered for the computation of � (τ, P).

III. APPLICATIONS

A computer code has been developed for the magnetostatic
field computation, in which the formulas of � (τ ∗, P) and
grad

[� (τ ∗, P)
]
for a set of important elementary geometries

have been implemented so far. The code is presently under
full development and it is being used for the simulation of the
behaviour of the superconducting magnets built with cable-in-
conduit conductors (CICC). This type of conductor is made by
several superconducting strands, wound together in some con-
secutive stages, to form larger and larger bundles made up to
more than one thousand strands. The behaviour of these con-
ductors strongly depends on the magnetic coupling between the
strands, and the resistive contacts between them, distributed
along the cable. Non homogeneous current distributions can
take place within these CICC, with possible local overloadings
and final magnet quench. The code permits a relatively accurate
geometrical description of the complex CICC geometry and this
model is used mainly for two main purposes. The first is the
simulation of the current distribution within the CICC, based
on a lumped inductive-resistive network model [5]. The other
model application is the inverse problem of the identification of
the current distribution inside the CICC: the current density dis-
tribution is determined starting from the signals given by sets of
Hall probes suitably located around the CICC [6].

IV. CONCLUSIONS

A mixed analytical-numerical procedure has been outlined
in this short version, which permits an accurate computation of
the magnetic field generated by sources with uniform current
density in air. Under certain hypotheses, it is possible to use the
analytical expressions also in presence of a non uniform current
density, as it is for example in a thick coil. In the full paper, the
formulas for a set of elementary sources will be given, as well
as the details of their application in a computer procedure.
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Abstract � Models for the sizing of electromagnetic devices using
reluctance network approach are very interesting especially for the
sizing and the optimisation. Unfortunately, too often, designer do not use
this approach because it is time consuming to use, mainly because of the
need to write and to solve the network equations. We have developped a
tool that automates all those symbolic operations. We also generate
software components that allow to use those models very efficiently in an
optimisation process by providing the formal right sensitivity. The
methodology and the software will be presented as well as their
application on examples.

INTRODUCTION

A designer can use different kinds of numerical models in
order to size and to optimise a device. Some of them, like the
FEM or the boundary element method, can be very precise,
but need large computation time that limits the number of
parameters and constraints that can be taken into account. So
the designer should also use, especially in the first step of the
design when he has to size a high number of parameters with
many constraints, a more macroscopic approach like the
reluctance network approach [1], [2]. Unfortunately, This
approach is often neglected because it is time consuming to
implement: as soon as the designer has a network topology in
mind, a lot of work has to be done to generate the equations
and to implement them in a programming language,
especially when saturating materials are used. This leads to
write implicit equations and to solve them by using numerical
methods. This paper describes solutions that could radically
change this state of the art for the designer. We have indeed
developed software methodologies and tools that
automatically make this job for the designer. Some similar
environments have still been developed [3], [4], but the
originality of this work is that we have a solution to generate
the right symbolic sensitivity of the output parameters of the
network even in the case of non linear behaviours due to
saturating materials.

AN AUTOMATIC GENERATOR OF SIZING MODELS USING RELUCTANCE

NETWORK

The aim of this paper is the realization of an automatic
sizing model generator using reluctance network (see Fig. 2).
We have called this software SolvReluct. The designer has to
provide:

The reluctance network of his device: This network has to
be build by the designer. For this purpose, the designer can
use his knowledge. He can also have made some fine
simulations, by using for instance a FEM approach, in order
to understand how the flux propagates in his device and what

could be the topology of the reluctance network able to
simulate the behaviour of the device [5].

The expression of the reluctance: It can be a reluctance in
air (1), in linear magnetic material (2) or in saturating
magnetic material (3).

S0

L
R

⋅µ
=  (1)  

Sr0

L
R

⋅µ⋅µ
= (2)

φ
⋅φ=φ L

)
S

(H)(R  (3)

Some particular reluctances, like the one of Fig. 1
extracted from [2], can also be considered.
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Fig. 1. A particular reluctance in air
Geometric relations: These relations connect the global

geometric input parameters of the devices to the particular
geometric parametric used in the expression of the
reluctances (parameters L, S of (1), (2) and (3)).

Magnetic laws: it corresponds to the functions
H(B)=H(φ/S) used in (3).

Automatic

generation

of the

sizing model

= SolvReluct
software

•Magnetic laws of materials
•Expression of the
reluctances

•Geometric relations

Sizing model

Text file containing

Implicit equations + Expression of
reluctances + Geometric Relations +
Magnetic laws of materials

Reluctance
Network

PSpice netlist

Rc

Rc
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Rent

Ra

Rb Rb

Rb Rb

E

Fig. 2. Inputs and outputs of the sizing model generator

THE METHODOLOGY FOR THE AUTOMATIC GENERATION OF THE  EQUATIONS

OF  THE SIZING MODEL

An algorithm has been used for the automatic symbolic
generation of the equations. Fig. 3 illustrates it on a simple
example. Let b to be the number of reluctances of the
network. The goal is to generate the equations that allow to
compute the b fluxes φj, j∈ [1,b] of each reluctance. In fact
we work with a reduced system. Starting from the netlist,
given in the PSpice format, a node matrix N is built. A
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number m of independent loops is defined by m = b-n+1 and
n is the number of nodes of the network. This allows to build
a loops matrix S. The vector of the magneto-motive forces F
of each loops, correctly oriented, is also built as well as the
diagonal matrix R containing the reluctances. The following
vector I is built:

ψ⋅⋅⋅−= TSRSFI (4)  with φ = ST ψ  (5)

Ψi, i ∈ [1,m] will be called the loops fluxes. The
reluctances stored in R may depend on the fluxes φ that
themselves depend on the loops fluxes ψ .

So: ψ⋅⋅ψφ⋅−=ψ TS))((RSF)(I (6)

N: Node matrix without sources
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Fig. 3. Generation of the implicit equation on a simple example

The vector I(ψ) is symbolically built. All the I(ψ)i,
constrained to be equal to 0, provide the implicit equations to
solve in order to find the values of the Ψi . Then (5) is used to
generate b symbolic expressions φj(Ψi).

The SovlReluct software implements this method. It has
been entirely developed in Java language. We will describe
its structure as well as all the procedures that automate the
symbolic manipulation of the equations.

PROGRAMMING OF THE FORMAL RIGHT SENSITIVITY OF THE MODEL

In order to use efficiently the sizing model in an
optimisation process, two approaches are adopted to manage
the implicit equations I(ψ)i=0. They are exhaustively
explained and compared in [6].

In the first one, the equations are generated with the
SolvReluct software in a first mode. They are then
automatically programmed in a software component
equivalent to the one shown on the left part of Fig. 4. This
programming is done with an automatic generator developed
in our lab. and that is now commercially available1. This

                                                          
1 : http://www.designprocessing.com

component has then to be integrated in an optimisation
process in which the b constraints I(ψ)i=0 will have to be
solved by the optimisation algorithm and the Ψi will be
managed as degrees of freedom of the optimisation.

In the second one, the equations generated by SolvReluct
and the automatic generator allows to create the software
component shown on the right part of Fig. 4. In this case a
numerical algorithm is internally used in the component in
order to solve the implicit equations.
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PP

Formal right 
computation of:φj

Fig. 4. The two kinds of software component generated for an use in an
optimisation process (Pk, k∈[1,r] are the input parameters of the
reluctance network)

In order to show the efficiency of the tools developed, we
will detail how they work on two examples. The first one is
the example of a coil. The second one is a more complicated
example of a claw pole alternator.

CONCLUSION

Thanks to a tool like SolvReluct, the designer has no
symbolic operations or programming to do in order to use a
reluctance network approach. This is certainly a key point to
use such an approach especially for the sizing and optimising
of devices when many parameters have to be considered.
Another advantage is that the designer can test very easily
new topologies and new variations of the reluctance network
to use, before adopting the one he will use for his
optimisation process. We also provide two approaches to
generate the right partial derivatives of the output parameters
of the network, which is another key point for the success of
the optimisation process.
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Computation of the strayfields generated by magnetic a core with air-gap 
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Abstract – A quick method to compute the field generated by a 
magnetic circuits is presented. The method, based on the equivalence 
between a magnetized material and a distribution of fictive charges, 
allows to compute at the same time the flux inside the core, and the 
magnetic field in the surrounding air. 

INTRODUCTION

We investigate the magnetic field generated in the air by 
electrical devices. Some classical numerical methods, like 
FEM or BEM, can be used to compute strayfields, but they 
generally lead to huge matrix systems, and require a detailed 
description of the geometry. On the other hand, the method of 
reluctances provides a simple way to perform an analytical 
computation of the flux inside a magnetic circuit, but it 
cannot be used to compute the surrounding field, since it is 
founded on the hypothesis of no-leakage flux. In [1] a simple 
method is proposed, nut it cannot be applied to magnetic 
cores. We propose a numerical method to compute 
approximately both the flux inside a magnetic circuit, and the 
surrounding field. The method takes into account only the 
essentials features of the geometry of the system. 

FORMULATION

Let �  be the volume occupied by the core, and � � ��

the boundary of � . The flux density is written as the sum of 
a term excB

�

 due to the coils, and the reaction field rB
�

. This 
one can be further decomposed[2] as the sum of the field 

* *
grado oE V� ���

�

���

 generated by a distribution of fictive 

charges, plus a term proportional to the magnetization M
�

 : 

*

1 inside 

( ) with 1/ 2 on 

0 in the air
oexcB B E kM k�

�

� � � �

�

�
� �

�
�

� � � �

(1)

The volume ( *
� ) and surface ( *

� ) fictive charge densities 

which generate the scalar potential *V  are given respectively 
by : * divo M� �� �

�

 and *

o M n� �� �

�

� .
The core is represented by a discrete path of N

elements � �
1

N

n n
E

�

, connected by M  sections � �
1

M

m m
S

�

. Let 

m�  be the magnetic flux through the section mS , and �  be 
the set of the boundary sections (air-gaps). 

Figure 1: sketch of an element 

The model is founded on the following four assumptions : 
A1 inside � , the flux density B

�

 is parallel to the axis of 
the core, and uniform over each perpendicular section. 

A2 the core is made of a uniform, linear, isotropic, 
insulating magnetic material. 

A3 the magnetic flux �  varies linearly in each element 
A4 the whole amount of charge in each element can be 

localized in the center of the element 
A1 and A2 are classical assumptions. A1+A3 implies that *

�

is constant in each element, and *
�  is zero in all the sections, 

excepted those on the boundary (that is mS �� ). A4 allows 
to simplify the numerical computations.  

It can be shown easily that the total fictive charge over the 
elements nE  and sections mS ��  is given respectively by : 

*
( ) . .

inward ( ) outward ( )

1r
E n

E n E nr

q �

�

� ��

� � � �� �

� 	

� � (2)

*

( ) outward ( )

1r
S m S m

r

q
�

�

�

� � (3)

Thus the potential *V  depends only upon the flux through the 

sections � �
1

M

m m�

� , which is taken as the unknown. 

Substituting ( 1) /( )r r oM B� � �� �

� �

 in eq. 1, one finds :  

*2 (

1

/( 1) )
r

exc or rB B E

�

� ��� �

� �

� �
�� �

� �
� �

� � �

(4)

mS

1mS
�

nE
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where the value of the prefactor depends upon the coefficient 
k  in eq. 1. The integration of eq. 4 over each section leads to: 

*2 (

1

/( 1) )
r

exc om r r m

�

� ��� � � � �

� �

� �
�� �

� �
� �

(5)

where 
m

exc exc

S

B n ds� � ���

�

�

 is known, and the term 

* *

m

m

S

E n ds� � ���

�

�

 is a linear combination of � �
1

M

m m�

�  whose 

weights depends only upon the geometry of the core. Thus 
eq. 5 leads to a linear system, which can be solved to compute 

the flux through the sections m� . Once � �
1

M

m m�

�  has been 
computed, the flux density is straightway computed in the air 
by eq. 4. 

Figure 2 : flux density on the 21 sections used for the computation 

IMPROVEMENT OF THE ACCURACY

In order to improve the accuracy of the solution, the 
Ampère's law is added as a strong constraint : 

m
n

o r m

H dl L NI
S� �

��

� ���

��

�� (6)

where nL  is the length of the n-th element and mS  is the 

surface of the m-th section. The sign of m�  depends upon the 
orientation of the m-th section. The linear system is then 
solved in the mean square sense using the Lagrange's 
multipliers method, and leads to a better solution.  

It's worthful to remark that eq. 6 alone is the classical 
reluctance method. Indeed our formulation is a generalization 
of the reluctance method, where the no-leakage hypothesis 
(�  constant in each element) has been replaced by the 
weaker assumptions A3 and A4. 

VALIDATION

We checked the effectiveness of the method on a simple 
magnetic circuit composed of a core (�r=100,
80�110�30 mm), a rectangular coil (I=0.5 A.turns) and an 
air-gap of 1 mm. In fig. 2 we plot the flux density in the core, 
computed using 21 sections. The same problem has been 
solved with the finite-elements software FLUX3D using 
123876 first-order elements. In fig. 3 the flux density 
computed in the air along a straight line (the dotted line in 
fig. 2) is plotted as a function of the distance from the core. A 
good agreement is found between our method and FLUX3D.

Figure 3 : flux density computed along the dotted line (see fig. 2) 

CONCLUSION

The proposed method allows to easily compute the flux 
density generated by a linear magnetic circuit. The accuracy 
of the result is not as good as in some classical methods like 
FEM or BEM. This may be due to the fact that some of the 
assumptions begin to fail in proximity of the edges of the 
core. However this is acceptable when one takes into account 
the low computational effort required. More details about the 
limits of the model will be given in the full paper. 
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A Novel Auto-Tuning Algorithm for the Integrated RBF  
Network of Brushless D.C. Motor 

S. L. Ho1, M.N. Fei2, K.W.E. Cheng1 and H.C. Wong3

1Department of Electrical Engineering, 3Industrial Centre, The Hong Kong Polytechnic University, Hong Kong 
2Department of Automation, Shanghai University, Shanghai 200072, P. R. China 

Email : eeslho@polyu.edu.hk 

Abstract—Integrated Radial Basis Function (IRBF) network 
was reported to be efficient in the performance study of 
brushless dc motors. However such algorithm cannot be 
implemented readily since it is difficult to auto-tune or even to 
find the undetermined coefficients in the integrated RBF 
network. In this paper, a novel auto-tuning algorithm that can 
effectively guarantee the automatic implementation of the 
integrated RBF network of brushless dc motor is reported. 

INTRODUCTION

The circuit-field (or field-circuit) coupled model of the 
brushless dc motor is more accurate, albeit computationally 
less efficient, than its circuit counterpart in studying the output 
characteristics of brushless dc motors. Hence, circuit-field 
coupled model is generally limited to off-line simulations only. 
To develop an on-line algorithm, an efficient RBF technique 
using artificial neural network based techniques is proposed to 
simulate and control the electric machines [1]. 

The outputs of the stator phase currents iA, iB, iC and the 
motor torque T are dependent on the inputs of the normalized 
stator voltages uA, uB, uC and the rotor position � in a highly 
nonlinear manner. However changes of outputs against the 
impressed stator voltage um or the rotor speed � can be 
regarded as virtually linear within a limited range. Hence, the 
IRBF network, which can be applied in the control and design 
optimisation of brushless dc motor with the same 
computational efficiency and accuracy as that in magnetic 
field computation using finite element modeling (FEM), has 
been proposed [2]. However, it is well-known that the 
undetermined coefficients in the IRBF network cannot be 
found accurately and automatically. In this paper a novel 
auto-tuning algorithm of the undetermined coefficients in the 
IRBF network of the brushless dc motor is reported. 

INTEGRATED RBF NETWORK PRINCIPLE

Radial Basis Function (RBF) network has a linear output 
layer and a simple structure with a nonlinear hidden layer to 
synthesis the local approximations corresponding to the 
nonlinear input-output mapping of the brushless dc motor as:  

�

�

�

�

�

�

�

�

),,,,,(
),,,,,(
),,,,,(

mCBACC

mCBABB

mCBAAA

uuuufi
uuuufi
uuuufi

��

��

��

                         (1)

),,,,,( mCBAT uiiifT ���                           (2)

The basic idea of the IRBF network [2] is that, by using an 
approximate piecewise-linear assumption within a certain 

range, one should model the centre point (um = umc and � = �c)
by an adaptive RBF network. The adjacent and basic points 
(um = umb1, umb2, … and � = �b1, �b2, …) could be modeled by 
the RBF network group with the same number of hidden layer 
nodes and parameters as the Gaussian based functions. 

Both the adaptive RBF network to model the centre point 
and the RBF network group to model the basic points are 
dependent on the training data from the circuit-field coupled 
time stepping FEM computation [3]. Hence the IRBF network 
for modeling other points within a certain range (see Fig. 1) 
requires no additional training data for the same hidden layer. 

center point  �(rpm)

um(V)any other points within a certain range 

basing 
points�

       �            
�(umb1, �b1)          (umbk, �bk)

�      �   � …
          (umc, �c)    

�
     

� �          
�(umb2, �b2)          (umbN, �bN)

0

Fig.1. The diagrammatic sketch of integrated RBF network mechanics  

To construct the IRBF network )( I
ijw , however, the 

weighting matrixes )(k
ijw of the linear layer of the RBF network 

group are used as the bases of the IRBF network. In order to 
reduce undetermined coefficients and to implement the 
auto-tuning algorithm efficiently, the main equations of the 
IRBF network are given as follows, 
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i xOwy
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)()( expexp
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bkII
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(5)

where )( I
iy  is the output of the IRBF network�the superscript

(I) refers to the network of current output or torque output, n is 
number of nodes in the hidden layer, Nb is the number of basis 
points, and c

�
 and cum are the undetermined coefficients. 

Usually, it is difficult to find suitable values of c
�
 and cum in 

the IRBF network. 

AUTO-TUNING PRINCIPLE

In order to find the optimized values of the undetermined 
coefficients c

�
 and cum automatically, the quadratic object 
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function of any specific point in an approximately linear range 
is defined as follows: 

� ��
�

��

N
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I
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Id
i yyJ
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2)()( (6)

that is 

min
1

2

1

)()(
�

�

�

�

�

�

�

�	� �
� �

N

i

N

k

kI
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Id
i
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yyJ � (7)

where )( Id
iy  is the output of the circuit-field coupled time 

stepping FEM computation, kI
iy )( is the output of the RBF 

network group, N is the total length of the output series. 

Assuming that  0
ˆ

,0
ˆ
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J

c
J
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, then the optimized 

solutions c
�
 and cum are obtained as follows: 
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where Auu, A
�u, Au�, A

��
, and Bu, B

�
 are measurable functions 

as given below: 
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These equations are available if the auto-tuning algorithm 
works at a limited range near the specific point that builds a 
quadratic object function. Moreover, instead of eq. (6), eqs. 
(7)-(13) can be modified with the quadratic object function 
about some specific points being constructed as follows: 
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where Na is the number of specific points used in the 
auto-tuning algorithm.  

Note that even though additional training data from some 
points are required by the IRBF algorithm when compared to 
that of the trial-and-error method, the IRBF network with the 
auto-tuning algorithm can effectively build as well as compute 
all the points accurately within a certain range without calling 
upon the time consuming FEM computation. 

EXPERIMENT ON THE BRUSHLESS DC MOTOR

The auto-tuning algorithm has been used to automatically 
evaluate the undetermined coefficients c

�
and cum of the IRBF 

network of a multi-pole PM brushless dc motor as shown in 
Fig.2 (200 W / 12 V, 22 poles, 24 stator slots, with Nd-Fe-B 
magnets). The training data used to build the frame of IRBF 
network as well as to optimize its undetermined coefficients 
are produced by FEM computations with a mesh of about 6000 
nodes. 

Fig. 2.  A 3-phase motor with 22 poles and 24 slots

The experimental conditions are within the range of 
20220 ��� rpm and 110 ��mu V. The target error 

� � � � )/(
2
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)(2

1
)()(
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i
Id

i
N

i
Id

i
I

i yyysqrt  is 0.05. The experiment 

results show that the auto-tuning algorithm can effectively 
guarantee a fully automatic modeling of the IRBF network. 

CONCLUSIONS

In order to ensure the undetermined coefficients are found 
quickly, accurately and automatically, a novel auto-tuning 
algorithm in the IRBF network of the brushless dc motor is 
proposed. The fully automatic implementation of the IRBF 
network should be very valuable for practical and industrial 
applications. Based on the IRBF network of the brushless dc 
motor and its auto-tuning algorithm mentioned above, further 
investigations can also be carried out to extend the range of the 
impressed stator voltage um and the rotor speed � for a given 
error tolerance for the simulation results obtained between the 
circuit-field coupled time stepping FEM computation and the 
IRBF network. 
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Abstract- The paper describes investigations for the optimal design
of Switched reluctance Motor (SRM). The approach focuses on the
maximization of the average torque while minimizing torque ripple. The
prediction of the average torque and torque ripple characteristics is
based on FEM for several motor configurations where stator and rotor
geometry parameters are varied, considering mainly the stator and rotor
teeth. Prior to optimization, interpolation of the data was performed
through function approximation using both least square method and
neural network based on generalized radial basis function. Both
approximation function results are very close and further show the
higher accuracy of the neural network approach.  The optimum
parameters are obtained and confirmed by numerical field solutions.

INTRODUCTION

In this paper a switched reluctance motor with four phase
regular 8/6 design optimization is performed. Usually, the
criteria of optimization are maximization of average torque
while reducing the torque ripple to the minimum, particularly
for low speed operation. For this purpose, machine structure
geometry and switching parameters are varied to achieve the
optimum design [1,2,3]. In his paper, investigations on the
significant geometry parameters are made. These are s and

r, stator and the rotor pole arcs. In order to account for the
geometry as well for the non-linearity of materiel utilized
finite element method is used and solutions are obtained for
several configurations corresponding to a set of (Bs, Br), but
limited to a region of the plane, called the feasible triangle
[1]. Field solutions are used to determine the static torque
characteristics.

In order to carry out shape optimization with sufficient
accuracy, numerous field solutions are required. But this
approach can be time consuming and require to adjust the
meshing at each iteration; a task which is difficult to achieve.
Interpolation techniques are therefore sought.  The
interpolation using non-linear least square method was
implemented to produce a suitable function approximation.
However, this has shown limitations as the error can become
significant and hence the optimization may not be accurate.
Another approach was explored for function approximation.
This is neural network based using the generalized radial
basis function [4]. After data training, a network is used to
approximate the objective function. An optimization
procedure was then performed using the data produced by the
neural network approach.

POLE ARCS DESIGN CONSIDERATIONS

In order to produce an unidirectional torque, there must be
an overlap between of the rotor and the poles of the excited
stator phase. The overlap angle should be greater than the
step angle, otherwise there will be ‘gaps’ where no torque is
produced. Moreover, in order to get the largest possible
variation of phase inductance with rotor position, the
interpolar arc of the rotor must exceed the stator pole arc. A
further constraint on the pole arcs is that usually the stator
pole is made slightly smaller than the rotor pole arc. This
permits slight increase in the slot area, the copper winding
cross-section, and the alight/unaligned inductance ratio.
These constraints on the pole arcs can be expressed
graphically in Fig,  in which the ‘feasible triangle’ [1] define
the range of combinations normally permissible Of course,
the variation in performance of SRM defined by different
points in these triangle is considerable. But depends on
various factors; torque ripple,  the starting torque and the
effects of saturation.

FINITE ELEMENT MODELLING

The electromagnetic modeling of the machine is
established from the meshing of the structure. A high mesh
density in the air gap was undertaken. The distance between
two positions was taken equal to 2.5 mechanical degrees.
This increment was found sufficient to allow motor parameter
determination with small error [3]. Fields solutions were used
to determine the static torque with respect to rotor position,
when three stator winding are excited in sequence. This
characteristic is presented in Fig 2. The torque ripple is given
by (1):

Stator

Fig 1. SRM Structure

Winding

Stator and
Rotor teeth

Rotor
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Fig.2 Variation of  static Torque
                with position

Various configurations of SRM were considered, where both
Bs and Br were varied, taking into account the constraints
above. The table 1 summarizes the values of the average
torque and torque ripple. It shows the effect of Bs and Br on
machine characteristics. However, this effect is less
significant with regard to the average torque.

Tableau 1 Values of average torque and torque ripple

(Bs,  Br) (deg) Average Torque (Nm) Torque ripple (%)

15  16 8.86 74.41
15  20 9.13 71.93
15  24 9.18 71.93

15  28 9.20 71.93

15  32 9.19 71.93
15  36 9.16 72.75
15  40 9.09 73.45

20  24 9.85 55.76
20  28 9.95 55.58
20  32 9.96 55.66
20  36 9.94 55.77
20  40 9.85 56.00

25  28 9.83 55.47
25  32 9.86 55.46

OPTIMIZATION USING NEURAL NETWORK

Application of neural network
In this method, an interpolation using neural network was

performed. based on the generalized radial basis function
(GRN)[4]. After data training, a network is used to
approximate the objective function. The trained GRN
network appears to produce satisfactory output results for
tested data that were not subject to training. Fig. 3 and 4 show
the variation of the average torque and torque ripple with
respect to (Bs, Br).  Then, an optimization procedure was

carried out for the search of maximum torque and minimum
ripple. This has led to the optimal structure with the
following configuration: (Bs, Br)= (25, 32).

Fig. 3. Variation of Average Torque with Bs and Br

Fig. 4. Variation of torque ripple ratio
with Bs and Br  and Br

CONCLUSION

The paper describes investigations for the optimal design
of Switched reluctance Motor (SRM). The approach focuses
on the maximization of the average torque and minimization
of torque ripple. Prior to optimization, interpolation of the
data was performed through function approximation using
both least square method and neural network based on
generalized radial basis function. Both approximation
function results are very close and further show the higher
accuracy of the neural network approach.  The optimum
parameters are obtained. These are confirmed by numerical
field solutions using FEM.
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Abstract— Real world optimization problems often re-
quire to minimize/maximize more than one objective
which, in general, are conflicting each other. These prob-
lems (multiobjective optimization problems, vector opti-
mization problems) are usually treated by using weighted
sums or other decision making schemes. An alternative
way is to look for the Pareto Optimal Front. In this pa-
per the Particle Swarm algorithm is modified to detect the
Pareto Optimal Front.

Introduction

Stochastic optimization methods have successfully
been applied to scalar and vector optimization problems.
In the latter case, the different objectives, which are in
general conflicting each other have to be transferred into
a single scalar objective function. This is usually done by
normalizing and processing the contributions to the ob-
jective function (weighted sums, fuzzy membership func-
tions, ...) [1].

An alternative approach is to find the Pareto optimal
front which summaries all Pareto optimal solutions [2].
A Pareto optimal solution is, by definition, the best that
could be achieved for one objective without disadvantag-
ing at least one other objective.

Particle Swarm Optimization (PSO) [3], a stochastic
method imitating the social behaviour of a bird flock, can
easily be adapted to perform this task. To test both per-
formance and reliability of PSO a plain low pass filter with
two conflicting objectives was chosen. In the extended
version a shape optimization problem of an electromagnet
will be presented.

Pareto Optimality

The solution to a multiobjective problem is, as a rule,
not a particular value, but a set of values of optimization
variables such that, for each element in this set, none of
the objective functions can be further increased without a
decrease of some of the remaining object functions (every
such value of an optimization variable is referred to as
pareto-optimal).

The simplest way illustrating this behaviour is shown
in Fig. 1. The point xt is pareto optimal because (1) (or
(2)) is true (OF ... objective function value).

OF1(xt+1) < OF1(xt) & OF2(xt+1) > OF2(xt) (1)
OF1(xt+1) > OF1(xt) & OF2(xt+1) < OF2(xt) (2)

Fig. 1. Pareto optimal point - One dimension

Particle Swarm Optimization

In the population-based search procedure σ particles
fly around in a multidimensional search space. After ini-
tialization within a range [xmin,xmax] each particle ad-
justs its position xt and velocity vt according to its own
experience and the position of the best of all particles.
The discrete ordinary differential equation controlling the
motion of a single swarm member is given in (3).

vt+1 =
(

1−
√

κφ

2

)
vt + κφ

(
xbest

t − xt

)
xt+1 − xt =

(
1−

√
κφ

2

)
vt + (1− κφ)

(
xbest

t − xt

)
(3)

with
xbest

t ... current swarm leader
φ = [0, 1] ... random number
κ = 0.8 ... swarm movability control

The procedure is stopped if the the whole swarm can
be found within a certain region which is defined by the
swarm radius ε.

The Standard PSO Algorithm Two conflicting ob-
jectives OF1 and OF2 are transferred into n weighted sums

OFwk = λk OF1 + (1− λk) OF2 k = 1, 2, ..., n (4)

and an optimal point is calculated for each of them. The
resulting n solutions obtained form the Pareto optimal
front.

The Pareto PSO Algorithm For each swarm mem-
ber both objectives OF1 and OF2 are calculated sepa-
rately and n weighted sums (4) are evaluated. For each of
these sums the particle yielding the best objective function
value becomes the leader xbest

t,k of the sub-swarm, which
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is formed by dividing the complete swarm into n equal
parts. The n sub-swarms then evolve independently from
each other following (3).
The major modification compared to the standard algo-
rithm is the detection of Pareto optimal solutions. To
speed up the algorithm this process is two fold. The first
step (preliminary pareto decision) is narrowing down the
choice by testing all swarm members against the simple
Pareto formulations (1) and (2).

This procedure is followed by a substantially stricter
selection process (main pareto decision), taking the slope
information into account.

If a particle is recognized to be Pareto optimal, it has
reached its final position and is removed from the swarm.
If the number of remaining swarm members has reached a
prescribed threshold or the maximum number of iterations
maxit has been exceeded, the algorithm stops.

Network Example

Two different pairs R1 and R2 (R(1)
1 = 30Ω, R

(1)
2 =

50Ω; R(2)
1 = 700Ω, R

(2)
2 = 100Ω) were used to set up the

frequency response of the amplitude ration H(1)(jω) = Uo

Ui

and of the phase angle θ(2)(jω) of a cascaded low pass filter
(Fig. 2). All other values were kept constant: Ri = 50 Ω,
RL = 100 Ω and C1 = C2 = 3.39 µF .

Fig. 2. Example circuit - complex representation

Optimization problem The task was to set up a
single circuit which approximates best the magnitude
H(1)(jω) and the phase θ(2)(jω). The two conflicting ob-
jectives are given in a least square sense in (5).

OF1 =
m∑

i=1

(
|H(1)(jωi)| − |H(jωi)|

)2

OF2 =
m∑

i=1

(
θ(2)(jωi)− θ(jωi)

)2

(5)

Optimization results The results and performance
of the Pareto PSO algorithm are compared to the solutions
obtained from the standard PSO algorithm. The number
of weighted sums was varied from n = 3 to n = 15, and
the weights λ were in the range λ = [ 0 : (n − 1) : 1 ].
Furthermore, the initial swarm size was varied between
σ = 50 and σ = 100 swarm members. The standard PSO
algorithm was run for each weight λ, while the Pareto
PSO algorithm was only run once. To be able to obtain
mean values, each task was solved ten times.

The resulting mean values are displayed Tab. I. It can
be observed that the number of total function calls is sig-
nificantly lower for the Pareto PSO algorithm.

Table I. function calls comparison

σ = 50 σ = 100

n pareto weighted sums pareto weighted sums

3 2639 8430 5085 17670

6 2548 8285 3953 34020

9 2228 24640 3921 53000

12 2259 32660 3811 66790

15 2646 40685 3761 84280

Fig. 3 displays the Pareto optimal front obtained from
both methods for n = 3 and n = 15 weighted sums. It
can be seen that even in the case with only a few weighted
sums the Pareto PSO models the Pareto front much better
than it can be done with the final solutions of the standard
PSO.

Fig. 3. OF1 and OF2

Conclusion

The particle swarm optimization algorithm was ap-
plied to a simple multiobjective optimization problem
with two conflicting objectives. The algorithm revealed
an excellent performance concerning the number of solu-
tions of forward problems and completed with a very re-
liable representation of the Pareto optimal front. Further
investigations will be made to increase both the number
of optimization parameters (increasing the dimensional-
ity) and the number of conflicting objectives. Based on
the results obtained an satisfactory behavior can also be
expected for real world applications.
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Abstract �The paper introduces a technique of incorporating a 
Continuum Design Sensitivity Analysis (CSDA) into an existing finite 
element software package to obtain an optimum shape of electro-
mechanical devices. In the continuum approach the design sensitivity is 
evaluated using an analytical formula with numerical solutions of the 
primary system and its corresponding adjoint system. The sensitivity 
coefficients were evaluated through Application Program Interface 
(API) between the command codes based on continuum sensitivity 
analysis and the electromagnetic software used. The applicability of this 
method is demonstrated by optimising the salient pole face shape of a 
high temperature superconducting (HTS) synchronous generator. 

INTRODUCTION

Design optimisation of electromechanical devices using 
existing finite-element (FE) analysis packages has proven to 
be successful in terms of both accuracy and time efficiency. 
Optimisation methods such as stochastic techniques, 
approximated polynomial evolution strategies, response 
surface methodology and genetic algorithms have been used 
in the design process. However, when practical electro-
mechanical devices are considered, these techniques are often 
not suitable due to the number of design variables. Such 
optimisation would simply require unacceptable computing 
times as the number of design variables increases. In an 
attempt to reduce the computing burden we have developed a 
methodology that combines CDSA with existing EM software 
(OPERA-2d Static Solver by Vector Fields Ltd). 

Accurate information on design sensitivity may be 
obtained analytically from the formula derived in [1]. This 
method is based on the adjoint variable method and 
continuum mechanics in which the shapes as well as the 
dimensions of a design object are considered. The core of the 
program lies in building an adjoint system from the primary 
system. The proposed method enables designers to consider 
all foreseeable shape designs of magnetostatic problems 
because the computing times required to find an optimal 
solution are not affected by the number of design variables. 

PROGRAM STRUCTURE

The design program consists of two modules as shown in 
Fig. 1. The first module, known as the Optimal Design 
Module, controls the overall optimization procedure and 
calculates several crucial values such as objective function, 
adjoint load term, design sensitivity, etc, relevant to the 
CDSA. The second module is related to the implementation 
of the software package, in our case OPERA-2d, where the 

pre-processor, solver and post-processor are involved. The 
two modules are constantly communicating with each other 
exchanging information about design variables, regions of 
interest and state variables.  

Fig. 1. Flow chart of CDSA in conjunction with the OPERA-2d. 

In general, the adjoint system has the same geometry, 
material properties and boundary conditions as the primary 
system. The only difference between the two systems is the 
source distribution. During the iterative process, the primary 
system equations are solved and the continually updated 
results are used to construct the adjoint system equations. 
Based on the post-processing results, the sensitivity 
coefficients are evaluated and coordinate information on 
design variables is updated. 

Usually the CDSA working in conjunction with FE 
software needs the full process mentioned above. However, in 
special cases, when the objective function is expressed in 
terms of energy, the adjoint system can be ignored. The 
reason is that the values of the adjoint state variables are 
exactly half of those in the primary system. 

NUMERICAL IMPLEMENTATION

The design sensitivity coefficients can be easily evaluated 
by the following procedure (see also Fig. 1): 

(I) Read data about design variables, constraints and 
region of interest defined in pre-design stage; 

(II) Transfer the design data to the pre-processor and solve 
the primary system; 

(III) Output the analysis data to the optimal design module 
and calculate the objective function; 

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



(IV) Compute the adjoint load and transfer it to the pre-
processor; 

(V) Solve the adjoint system and output its analysis results 
to the optimal design module; 

(VI) Evaluate sensitivity coefficients from the sensitivity 
formula [1] and update the design data. 

EXAMPLE

The proposed design method has been successfully 
applied to shape optimisation of a salient pole rotor of a HTS 
synchronous generator [2]. The stator of the generator has 48 
slots and a balanced two-pole three-phase star-connected 
stator winding.  Due to symmetry and under no-load 
condition, a quarter of the generator is analysed using 
nonlinear FEM. In order to minimise the effect of the 
undesirable harmonics of the air-gap flux density, an optimal 
design of the pole face shape is required. To achieve this goal, 
the following objective function is evaluated over a 90˚ arc at 
a 160 mm radius. 

)sin(7.0,)( 2
�����

�
�

rioriori BdBBF
f

             (1) 

where Bri is the radial component of the air-gap flux density   
comprised of odd harmonics order up to 19th and �  is the 
angle between 0o and 90 o. A total of 53 grids forming the 
outline of the rotor pole have been selected as the design 
variables and allowed to move in the radial direction whose 
base point is located at (0,89). 

The flux lines of the primary and the adjoint systems are 
examined in Fig. 2 before the iteration process. As expected, 
the flux distribution for the two systems is different due to the 
applied sources. After only 23 iterations, the optimal pole 
shape of Fig. 3 was obtained. The magnitudes of the flux 
density at different positions before and after the optimisation 
are shown in Fig. 4. 

CONCLUSIONS

The computing times needed to reach an optimal solution 
can be reduced considerably by incorporating the 
optimisation technique into the existing finite element (FE) 
software package without compromising the accuracy. 
Moreover, using CDSA, the system equations are solved only 
twice regardless of the number of design variables. 
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(a) Primary system. 

(b) Adjoint system. 

Fig. 2. Comparison of flux lines between the primary and the adjoint 
systems before starting the iterative design procedure. 

Fig. 3. Pole face shape optimisation. 
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Abstract�The ferromagnetic pole pieces of permanent magnet assembly 
for MRI(magnetic resonance imaging) is optimally designed taking 
account of the pulse excited gradient coil field. In the design, the transient 
design sensitivity analysis is combined with 3D finite element method to 
give a search direction. The effects of the eddy currents, induced on the 
ferromagnetic pole pieces, on the main magnetic field strength and 
homogeneity in diameter of spherical volume(DSV) are also investigated.  

I. INTRODUCTION

The permanent MRI magnet is a viable alternative to the 
resistive and superconducting MRI magnet because it has the 
advantages of compact assembly, small leakage flux and low 
operating cost [1]. When the permanent MRI magnet works, 
the eddy current induced by the pulse excited gradient fields on 
the magnetic pole plates, which are made of steel, changes the 
homogeneity of the average magnetic fields, and causes a delay 
of build-up of the gradient fields, which may result in resolution 
degradation in the computed image. In this reasons, the pulse 
excited gradient coil currents should be taken account in the 
design of permanent MRI magnet [2].  

However, most of the researches on the design of permanent 
MRI magnet have been confined to simplified 2D model, or 3D 
linear magnetostatic model [2,3].  

In this paper, the magnetic pole shape of the permanent MRI 
magnet is optimized considering the gradient coil current in 
order to get uniform magnetic fields in the working space by 
using A,�-A finite element method and transient design 
sensitivity analysis combined with steepest descent method. 

II. FIELD ANALYSIS AND DESIGN SENSITIVITY FOR 3D  
TRANSIENT EDDY CURRENT PROBLEM

The governing equation for the 3D electromagnetic system 
with dynamic excitation is given as 
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    in 1V    (1) 

� � � � 0s rA A J + B� � ��� �� �� �� � ��          in V2     (2)

where V1 and V2 present the conducting and non-conducting 
regions, respectively. Apply finite element method to (1) and 
(2), a differential matrix equation is obtained as follows: 

[ ][ ] [ ][ ] [ ]K A M A f� �
� .          (3) 

where � denotes the time derivative. 
In the 3D transient eddy current problems, the optimal shape 

design problem, in general, can be defined as follows[4]: 
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Where G is arbitrary differentiable function, [ ]p is the design 
variable vector. The design sensitivity is derived as follows: 
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Differentiating the both sides of (3) with respect to p ,
introducing an adjoint variable [ ]�  and integrating from 0 to T, 
it becomes 
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If [ ]� is chosen so that the coefficients of terms involving 

t TX p
�

� �  and X p� �  in (5) and (6) are equal, the following 
equations are satisfied, 
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The design sensitivity in (5) can be written as, 
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where ]~[X  is the solution of (3) by using time stepping 
method, 
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and [ ]�  is the solution of (7) and (8) from 

11 )1()1( ��

������
�
�

�

�

�
�

	




��

�

��
�
�

�

�

�
�

	




�

���
nnnT

T
n

T
T qqK

t
M

t
MK

        (11) 

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



where, )(1
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The stiff matrix of (10) and (11) are exactly same when 
5.0�� .

III. Design RESULTS AND DISCUSSION

Fig.1 shows a model of permanent MRI magnet. The yoke 
consists of four columns at each corner and two ferromagnetic 
pole pieces, and made of steel(SS400) whose conductivity is 
51�106S/m. The NdFeB permanent magnet, the source of main 
magnetic field, has the residual magnetic flux density of 1.21T, 
and a hole of 60� at center. The gradient coil has 15 turns is 
located on each pole piece, and excited by pulse current shown 
in Fig.1.  

(a) 

      
(b)                                                                 (c) 

Fig.1. Model of permanent MRI magnet. (a) whole view, (b) cross section, (c) 
gradient coil currents. 

The design target is to find a smooth optimum pole shape 
that gives uniform magnetic field distribution within 100mm 
DSV on 0z �  plane. The initial shape of the pole is assumed to 
be flat. As the design variables, z coordinates of 202 nodal 
points on the pole surface near gradient coil are taken and 
allowed to move in z direction. The objective function is 

2arg

1
00
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ettN

i

T
i BdtB
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where B0 is uniform field value; Ntarget is the number of nodes 
within target region. 

After the design variables are updated using the computed 
transient sensitivity, the Bezier spline with 9th order is used to 
get a smooth shape along the radial axis. 

After 36 iterations, the average uniformity of the magnetic 
fields in DSV is reduced, as shown in Fig.2, from 1775.367ppm 
to 349.401ppm. Fig.3 compares the final optimized shape with 
the initial one. With initial pole shape, the magnetic field at the 
center point is shown in Fig.4(a), where it is clear that the set-up 

of the gradient field is delayed due to eddy current. Fig.4(b) 
shows the magnetic field distribution on symmetric surface.  

The results indicate that it is necessary for the pole shape 
design of permanent MRI magnet to take account the eddy 
currents. 

   
(a) initial case                                        (b) optimum case 

Fig.2 The magnetic field distribution in DSV. 

Fig.3 Initial and optimum shape of pole piece. 

(a)                                          (b) 
Fig.4. Magnetic field distribution. (a) at the center of DSV, (b) on symetric 
surface. 
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Abstract—The paper presents application of support vector machines
(SVM) for inverse problems of electromagnetics. SVM is a new approach
to neural network learning, in which the learning task is transformed
to the solution of the quadratic problem with linear constraints. The
well known solutions of such problems lead to the global minimum
of the cost function. SVM were reported to be extremely effective for
classification and regression. Results of our numerical experiments prove
that this technique can be also successfully adapted to solve optimization
problems of electromagnetics.

INTRODUCTION

Many different types of the ANN have already been
proposed for solving inverse problems of electromagnetics and
no one seems to be superior. We like to focus your attention
on support vector machine (SVM), a new approach to neural
network learning which, compared to other ANNs, shows
several important advantages.

In the full paper we will show application of SVM for
design of excitation coil for an electromagnetic flow meter
based on 3D numerical model. This problem is, however, too
complicated for short paper, so here we only briefly present
the methodology on a known example shown in Fig. 1 [1,
2]. The goal is to design the lower edge of the air gap (A-A’

D D’

A A’

COIL (j=3.81e+6 A/m)

AIR GAP

0

0.020
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r

r

r

Fig. 1. Geometry of the sample problem

in Fig. 1) to obtain the uniform distribution of y-component
of the flux density on the upper edge of the air gap (D-D’
in Fig. 1). The y-coordinates of the N points marked with
small diamonds in Fig. 1 form d = (y1 . . . yN )—the vector
of the design parameters, and the target can be defined as
follows

min
d∈A

(
M∑

k=1

|By,k(d) − B̂y,k|
)

(1)

where A is domain of allowed shapes of the A-A’ segment,
By,k is the computed and B̂y,k is the desired value of the y-
component of the magnetic flux density �B in k-th of M points
chosen on the D-D’ segment, where magnetic flux density is

controlled. Later we will use b = (By,1, . . . , By,M ) for values
of flux density corresponding to given d.

The ANN approach to inverse problem requires to solve
many forward problems, when test shapes, represented by
vectors of design variables di are tried and the database used
later for teaching ANN is collected. This database consists of
corresponding pairs (bi,di). Having database ready one can
train neural network to approximate the unknown function
d = f(b). Trained network feeded with (B̂y,1, . . . , B̂y,M )
should respond with the optimal shape.

SUPPORT VECTOR MACHINES

SVM has only one output [3], and thus to find the whole
vector d we need N networks. However, this demerit is
compensated by the low numerical cost per one SVM.

Each SVM should approximate given function d(b) on
set (b, d(b)) where b ∈ RM and d(b) ∈ R is one of the N
design parameters. Teaching data (bi, di) are approximated
with

y(b) =
K∑

j=0

wjϕj(b) = wT ϕ(b), (2)

where unknown weight vector w = (w0, w1, . . . , wK)T

contains polarity (w0) and ϕj(b) are known basis functions.
For sake of effectiveness and to transform the problem into
quadratic programming we shall adapt error function for
learning with some tolerance ε [3, 4]:

Lε(d, y(b)) =

{
|d − y(b)| − ε for |d − y(b)| ≥ ε,

0 for |d − y(b)| < ε.
(3)

The goal of the teaching process is to find values of wj ,
number of the basis functions ϕj(b) and their parameters
which will minimize the cost function defined as

E =
1
p

p∑
i=1

Lε(di, y(bi)) (4)

with constrain for the value of weights: ||w||2 < C0, where
C0 is given constant.

Introducing complementary variables ξi and ξ′i we can
transform the above problem to the more global form of
minimization of the new cost function

φ(w, ξ, ξ′) = C

[
p∑

i=1

(ξi + ξ′i)

]
+

1
2
wT w, (5)
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with the following constrains

di − wT ϕ(bi) ≤ ε + ξi, (6)

wT ϕ(bi) − di ≤ ε + ξ′i, (7)

ξi ≥ 0, ξ′i ≥ 0. (8)

Note that ξ and ξ′ are chosen such, that |di − wT ϕ(bi)| −
(ε + ξi) ≤ 0 what assures Lε+ξ = 0, what in turn minimizes
cost function E.

The constant C in (5) can be explained as an regulariza-
tion parameter setting compromise between the value of the
tolerance (set by ε, ξ and ξ′) and value of weights.

For problem formulated by (5)-(8) we can define the
following Lagrange function

J(w, ξ, ξ′,α,α′, γ, γ′) = C

[
p∑

i=1

(ξi + ξ′i)

]
+

1
2
wT w +

−
p∑

i=1

αi

[
wT ϕ(bi) − di + ε + ξi

]
+ (9)

−
p∑

i=1

α′
i

[
di − wT ϕ(bi) + ε + ξ′i

] − p∑
i=1

[γiξi + γ′
iξ

′
i] ,

where the Lagrange multipliers αi and α′
i are responsible

for the functional constrains and γi and γ′
i are responsible

for holding ξi ≥ 0, ξ′i ≥ 0. The goal of optimization is to
minimize J with respect to weights w, ξi and ξ′i (primary
problem) and to maximize it with respect to αi, α′

i, γi and γ′
i

(dual problem). The methods for solving quadratic problem
are well known and there is no place here to present this
solution in detail [3, 4, 5], so we will just show the final
result: after the Lagrange multipliers αi0, α′

i0 are calculated,
the weight vector can be obtained as

w =
Ns∑
i=1

(αi0 − α′
i0) ϕ(bi), (10)

where Ns is the number of non-zero Lagrange multipliers
and respective bi are called support vectors [4]. Moreover the
response signal can be described as

y(b) =
Ns∑
i=1

(αi0 − α′
i0) K(b,bi) + w0, (11)

where K(bi,bj) = ϕT (bi)ϕ(bj) is so called kernel function.
The most know kernels are radial Gaussian, polynomial or
sigmoidal functions. It has been shown [6] that use of this
kernel function instead of neurons activation functions leads
to great reduction of the computational cost in learning and
testing as well. The number of numerical operations becomes
independent on the dimension of input vector.

NUMERICAL RESULTS

A SVM toolbox designed in our group was used to
solve the problem shown in Fig. 1. In earlier publications
we have used this test to compare different algorithms of
shape optimization [2]. SVM has proved to be much more

effective than other ANNs. We have trained the radial kernel
SVM using the learning base of only 50 test shapes d and
corresponding distributions of flux density b. Then SVM was
used to find shape which will assure the uniform By = 80mT.
The obtained shape and corresponding flux density are shown
in Fig.2. Those results are the best we have obtained with

0.0792

0.0794

0.0796

0.0798

0.08

0.0802

0.0804

0.0806

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

flu
x 

de
ns

ity
 (

T
)

D-D’ distance (m)

Fig. 2. SVM solution of the sample problem: the optimal shape (left inset)
and the distribution of flux density along DD’ (right inset)

any ANN. The learning database was rather small—previous
experiments have shown that multilayer perceptrons needed at
least ten times more learning patterns [1, 2]. It is an important
feature when ANN is to be used to solve an inverse problem
of electromagnetics where evaluation of each learning pattern
can be computationally very expensive.

CONCLUSION

The experiments have shown that SVM can be a very ef-
fective tool for many problems of optimal design. It has many
advantages: SVM needs relatively small learning database,
learning process is very fast and it leads to the global mini-
mum and last but not least the complication of the problem
(usually measured by the number of design variables and the
number of controlled quantities) practically does not influence
the complication of the SVM network.

These hypotheses were verified by another test problem
which will be used in the full paper: 3D design of the excita-
tion coil of the electromagnetic flow meter [7]. This problem
is too complicated to be explained here, but conclusion is the
same: SVM network can be successfully applied to solve even
huge, 3D inverse problem at reasonable computational cost.
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Abstract � This paper shows the minimization technique of detent 
force in inserted core type slotless Permanent Magnet Linear 
Synchronous Motor (PMLSM) by using neural network. In general, 
detent force affected in noise and vibration on Permanent Magnet (PM) 
linear machine. The width of coil and that of permanent magnet were 
adjusted to reduce detent force. Optimum value was calculated by 
neural network. It could be also easily calculated without time-
consuming efforts. The results with neural network well corresponded to 
those of 2 Dimensions Finite Element Method (2D-FEM). 

GENERAL INFORMATION

Slotless PMLSM has no detent force and low normal force, 
so it is suited for precision instruments requiring accurate 
controlling, but it has a disadvantage of lower power density 
than slotted type. On the contrary, slotted PMLSM has 
relatively high power density but strong detent force, so it has 
lower control performance than slotless type one.[1] 

Thus, this paper adopted a complementary method to 
enhance output by inserting core between windings of each 
phase in slotless type PMLSM, while adjusting the width of 
coil and PM so as to detent force minization. 

Neural network was introduced to calculate the optimum 
value of design. This paper used back-propagation neural 
network model on multi-layer feed-forward neural network 
[2]. The neural network was led to learning by the results of 
FE analysis. Variables in input design include the width of 
coil and PM, while variables in output include thrust, detent 
force and its 6th order harmonics component. 

The optimum values obtained from neural network were 
compared with the results of FE analysis. By using neural 
network, the calculation time to get the optimum value of 
design could be remarkably shortened. 

ANALYSIS MODEL

N NS S

C C’ A A’ B’B

N NS S

C C’ A A’ B’B

Fig.1.  The analysis model of inserted core type slotless PMLSM 

Fig. 1 shows the analysis model for inserted core type 
slotless PMLSM. Compared to slotless model, this had 

considerably increased energy density from decreasing 
magnetic air gap due to inserted core. 

Table 1 shows dimension and specification of inserted 
core model 

Table 1. Dimension and specification of analysis model 
Parameter Values[Unit] Parameter Values[Unit] 
Number of poles 12 Turns / Phase 650 [turns] 
Br 1.2 [T] Height of coil 11 [mm] 
Height of PM 12 [mm] Width of coil 12 [mm] 
Length of PM 73.5 [mm] Distance of coil 12 [mm] 
Width of PM 26 [mm] Phase current(max) 2.66 [A] 
Pole pitch 28.5 [mm] Length of air-gap 2 [mm] 

ANALYSIS RESULTS

Optimum values 

Fig. 2 shows the results of analysis by neural network. 
When the width of coil is 6mm and the width of PM is 26mm, 
the optimum values by neural network are shown as table 2. 
Also, table 2 shows anlaysis results by FEM. 

Detent force mostly consists of 6th order harmonics 
component as slotted harmonics. Thus, the minimization of 
6th order harmonics component indicates same results as that 
of detent force. 

Table 2. Specification of analysis model
Analysis 
method 

Thrust[N] Detent 
force[N] 

Ratio of 6th order harmonics 
component of  the thrust[%] 

Neural network 993.6 5.2 0.2 
FEM 993.7 4.996 0.36 
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Fig. 2. Calculation results  using  neural network 

Back-E.M.F and Inductance 

Back electromotive force(emf) was calculated with 
variation of linkage flux. As a result of analysis, it was found 
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that Root Mean Spuare (RMS) value of back emf  increased 
from 49.03[V] to 117.19[V] after inserting core. For an 
optimum model, this value increased up to 132.71[V]. This 
means that magnetic air gap was more decreased, since the 
width of inserted core was increased in optimum model.
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Fig. 3.   Back-E.M.F (v=2m/s) 

In this study, inductance was calculated by Energy 
Perturbation method. Table 3 shows the analysis results for 
each model 

Table 3. Comparison of Inductance in each model 
Inductance Self [mH] Mutual [mH] 

Experiment Slotless 29.38 - 
Slotless 30.86 9.08 

Inserted core 69.45 24.42 Analysis 
Optimum 119.89 54.76 

Detent force  and Thrust 

The detent force was calculated with Maxwell stress 
tensor. The analysis results for each model are shown in Fig. 
4. The detent force corresponds to the 6th order harmonics 
component of thrust and the slot harmonics by teeth-slot 
structure. For inserted core model, the maximum value 
amounted to 55.96[N], while it decreased considerably down 
to 4.996[N] for optimum model. 

0 . 0 0 1 4 . 2 5 2 8 . 5 0 4 2 . 7 5 5 7 . 0 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

D i s p l a c e m e n t  [ m m ]

  S l o t l e s s    I n s e r t e d  c o r e     O p t i m u m

D
et

en
t F

or
ce

 [N
]

Fig. 4. Detent force 

Fig. 5 shows the thrust for each model. As shown in this 
figure, inserted core model has double or more thrust than 
slotless model. As a result of analysis, it was found that thrust 
increased from 427.86[N] to 1004.27[N] after inserting core. 
For an optimum model, this value increased up to 1142.32[N]. 

Fig. 6 shows the analysis results for harmonics of thrust. It 
can be found that the 6th harmonics as slot harmonics were 
considerably more reduced in optimum model than in inserted 
core model. 

Fig. 7 shows the characteristics of thrust upon steady state 
operation for each model. Inserted core model has double or
more thrust than slotless model. Meanwhile, ripple ratio 

reached 11.68[%] in inserted core model, while it decreased 
remarkably down to 3.92[%] in optimum model. 

These results have little influences on operational 
characteristics of motor.
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Fig. 7. Steady state thrust 

CONCLUSION

In this paper, optimum value was calculated with neural 
network so as to maximize the thrust of inserted core type 
PMLSM and minimize detent force. For maximization of the 
thrust and minimization of  detent force, the width of coil and 
that of PM were adjusted respectively. Optimum values were 
examined by FE analysis, and almost correspondent results 
could be obtained. It was noted that using neural network 
could save more time and efforts than FEM process. 
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Abstract— In this paper we propose a method for the ex-
act computation of the Hessian matrix of the training error
function for a multilayer perceptron network. The Hessian
matrix is divided in small sub matrices, calculated indepen-
dently, and then obtained by assembling these sub matrices.
We developed a new pruning technique using the Hessian to
estimate the error deviation due to the elimination of con-
nections in the net. The method proposed is applied in the
optimization of a loudspeaker’s magnet problem consisting
of seven design variables. The number of input variables is
reduced whilst achieving the objective of the problem at an
acceptable computational time.

Introduction

Given a data set consisting of input-output pair samples,
one may train an artificial neural network to obtain an
approximate objective function, which substitutes for the
real model in the optimization process. This methodology
is useful when the objective function is not available or
demands high computational cost [1].

However, it is difficult to determine the exact topology
for a neural network in an specific problem. To overcome
this difficult, one may use pruning techniques. These tech-
niques consists of systematically eliminate connections in
the trained network, aiming to reduce its topology and ob-
tain a minimum network size with good generalization per-
formance.

Another motivation for using pruning is to investigate
if the input space dimension may be reduced. If, after
pruning the network, all or almost all connections of a given
input variable are eliminated, we may remove this input
and, hence, reduce the complexity of the problem. This
type of analysis is interesting in diagnostic problems, fail
detection, and also in optimization problems.

In this paper we propose a method for the exact cal-
culation of the Hessian matrix of the error function for a
multilayer perceptron network. A methodology for select-
ing weights for pruning is derived. The technique is applied
to an optimization problem. The number of input variables
of a loudspeaker’s magnet design problem is reduced using
the described approach.

Computation of the Hessian Matrix

Applying first derivatives to the training error function,
we can get the gradient vector, which is the basis for train-
ing multiplayer perceptron networks. Rumelhart developed

this procedure in his error backpropagation algorithm [2].
Applying second derivatives, we can obtain the Hessian ma-
trix. The following equations determine completely each
element of the Hessian matrix for a generic network topol-
ogy.

If both weights belong to the same neuron:

∂

∂w
(l)
ji

(
∂ξ

∂w
(l)
jg

)
= −h

(l)
j x(l)

g x
(l)
i , l = 1, . . . , k (1)

where w represents a weight, superscript indicates the layer
index, first subscript indicates neuron index in a layer, sec-
ond subscript indicates weight index in a neuron, k is the
number of layers. x represents a given input for a layer,
and ξ is the error function. Furthermore:

h
(l)
j = f ′′

(
u

(l)
j

)
ej +

[
f ′

(
u

(l)
j

)]2

(−1), l = k

h
(l)
j = f ′′

(
u

(l)
j

) ∑
r δ

(l+1)
r w

(l+1)
rj

+
[
f ′

(
u

(l)
j

)]2 ∑
r h

(l+1)
r w

(l+1)
rj w

(l+1)
rj , l < k

(2)

where δ is the local gradient, u is the weighted sum of the
inputs in a neuron, e is the error of a neuron in the output
layer, and f(·) is the transfer function. h

(l)
j is the local

hessian of the jth neuron in the lth layer.
If both weights belong to different neurons in the same

layer:

∂

∂w
(l)
ji

(
∂ξ

∂w
(l)
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)
= −h

(l)
hjx

(l)
g x

(l)
i , l = 1, . . . , k (3)

with:
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) ∑
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(4)
Finally, if the two weights belong to different neurons in

different layers:

∂
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)
= −h
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g x
(l)
i , l = 2, . . . , k; p < l

(5)
with:

h
(l,l−p)
jh = f ′

(
u

(l−p)
h

)
h

(l)
j w

(l)
jh , p = 1

h
(l,l−p)
jh = f ′

(
u

(l−p)
h

) ∑
r h

(l−p+1,l)
rj w

(l−p+1)
rh , p > 1

(6)
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We may extend (1), (3) and (5) to matricial form, giving:

H
(l)
j = −h

(l)
j �x(l)�x(l)T

(7)

H
(l)
jh = −h

(l)
jh�x(l)�x(l)T

= H
(l)
hj (8)

H
(l,l−p)
jh = −h

(l,l−p)
jh �x(l)�x(l−p)T

= H
(l−p,l)T

hj (9)

With the submatrices above, we can assemble the Hes-
sian matrix:

H(l) =




H
(l)
1 · · · H

(l)
1N

...
...

H
(l)
N1 · · · H

(l)
N


 (10)

considering that the lth layer has N neurons. Also:

H(l,l−p) =




H
(l,l−p)
11 · · · H

(l,l−p)
1N

...
...

H
(l,l−p)
M1 · · · H

(l,l−p)
MN


 = H(l−p,l)T

(11)

considering that the lth layer has M neurons and (l − p)
layer has N neurons. Finally, using (10) and (11):

H =




H(1) · · · H(1,L)

...
...

H(L,1) · · · H(L)


 (12)

considering that the network has L layers.

The Pruning Technique

Having the Hessian matrix and using the Taylor series
expansion, we can estimate the variation caused in the er-
ror function when a connection is eliminated. We consider
that the weights are eliminated after training the net. In
this way, we expect that the weight vector be in a local or
global minimum. Hence, we may consider a quadratic ap-
proximation and we may neglect the gradient vector, which
gives:

∆ξmean = ξ(�w + ∆�w) − ξ(�w) ≈ 1
2
∆�wT H(�w)∆�w (13)

Therefore, we may estimate variation in the error func-
tion due to a disturbance ∆�w in the weight vector. This
disturbance is selected in a such way to eliminate a set of
weights.

Results

We analyze the design of a loudspeaker’s magnet, Fig.
1, consisting of seven geometric variables, given in Table I.
The objective is to maximize the magnetic flux in the air-
gap, which is established using the finite element method.

A 243 point data set is obtained by random sampling in
the feasible region [3]. This data set is required for train-
ing a multilayer perceptron network. The initial topology

Fig. 1. The loudspeaker problem configuration.

TABLE I

Limits for the 7 parameters

Var wi wt wl wr wb hm hb
Unit mm mm mm mm mm mm mm
Min 3 5 1 1 1 3 2
Max 12 15 4 7 4 12 7

of the network was 7:50:1. A mean squared error (MSE) of
0.0023 was reached by the training process. After training,
we computed the Hessian matrix using the method pro-
posed. Table II presents the predicted error variation, by
using (13), and the real variation for each variable when it
is rejected by eliminating its corresponding input connec-
tions.

TABLE II

MSE Variation

Var Predicted variation Real variation
wi 0.0021 0.0018
wt 0.0789 0.0822
wl 0.0199 0.0167
wr 0.0043 0.0063
wb 0.0018 0.0001
hm 0.0313 0.0311
hb 0.0178 0.0157

We see that the error function is less sensitive to wi and
wb, hence we may remove these variables from the seven
variable problem and thus reduce complexity of the opti-
mization process. Eliminating the less significant variables
the problem was reduced to one of five variables and was
solved using a hybrid method. The result found gives a
magnetic flux density of 1.5424 T , which is in agreement
with the literature. Details of the problem will be discussed
in the full paper.
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Abstract� Pareto theory and stochastic method are used to 

optimize multi-objective functions in the paper. The combination method 

of Pareto genetic algorithm and electromagnetic field numerical 

calculation is proposed to optimize a roll-iron core transformer. The 

transformer designers can obtain different optimal schemes emphasizing 

particularly on different objective functions from the Pareto optimal sets. 

INTRODUCTION

The no load loss of a roll-iron core transformer is much 
lower than laminated core, as there is no any joint or less 
joints. However, magnetic flux distribution in the core isn’t 
proportioned, thanks to the special core structure of the 
roll-iron core transformer. For avoiding the stronger magnetic 
flux density in some regions, the core diameter can’t be 
designed to be too small. And this results in the transformer’s 
cost is almost as much as the laminated iron core transformer. 
In order to reduce the cost, an optimization method must be 
used to design the transformer’s core.  

The problem belongs to a multi-objective optimization. The 
multi-objective optimization problems in an electrical device 
were generally transformed to a single-objective optimization 
problem by taking some weights of objective functions. 
Consequently, some man-made factors are added into the 
optimal results. The results will be subject to the weights. 
However, Pareto theory, which is effective to the 
multi-objective optimization problems, can give optimal sets 
emphasizing particularly on different objective functions. 

Pareto theory had ever been used in the multi-objective 

optimal designs of microwave absorbers and airplane airfoils 
[1,2]. In the paper, the combination method of Pareto genetic 
algorithm (PGA) and the electromagnetic field numerical 
calculation is proposed to optimize the roll-iron core 
transformer in the paper. 

MATHEMATIC MODEL

Multi-objective optimization problem can be described as 
follows, 

Min  f(x)                  (1) 

x� Rm
� g(x)�0, h(x) � 0            (2) 

In (1) and (2), x=[ x1, x2, …,  xn ]T, f(x)=[ f1(x), f2(x), …, 
fn(x)]T, g(x)=[ g1(x), g2(x), …, gn(x) ]T, h(x)=[ h1(x), h2(x), …, 
hn(x) ]T. When there isn’t any point in Rm satisfied fi(x) � fi(x*),
x* is the optimal point. And the points have to fail the other 
objective functions, when they improve an objective function. 
Genetic Algorithm find the optimal point in a group, so it is 
suitable for searching Pareto points. 

CALCULATED RESULTS

A level 10kV, 30kVA 3-phase roll-iron core transformer 
shown in fig.1 is optimized, according to above mathematical 
model. The formula is as follows, 

Maximum:  The magnetic flux density 
Minimum:  The iron core cost 
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Constraint:  Magnetic flux density is less than 1.8T, 
and the core diameter is less than 107mm,the core window 
width is less then 227mm, height is less then 495mm. These 
variables are coded by binary system in the genetic algorithm. 
The optimization results are shown as Fig.2 and Fig.3. 

(a) 

(b) 

Fig.1 Illustration of a roll-iron core transformer 

Fig.2   Pareto optimal set of the cost versus the magnetic flux density

(a) Cost=0.9%, Diameter= 

(b) Cost=0.35%, Diameter= 

Fig.3 Distributions of magnetic flux densities at different optimal schemes 

CONCLUSIONS

 The combination method of Pareto genetic algorithm 
and electromagnetic field numerical calculation is 
successfully used to optimize a roll-iron core transformer. 
From the Pareto optimal sets, the transformer designers can 
obtain different optimal schemes emphasizing particularly on 
different objective functions. 
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Abstract � A new tabu search algorithm for global optimization of 
multimodal functions with continuous variables is presented. The tabu 
list contains all points and a prohibited zone around each point that 
depends on the value of its objective function and decreases as the 
number of iteration increases. The numerical results obtained by solving 
the problem 22 benchmark of the TEAM workshop demonstrates the 
speed effectiveness of the proposed method. It is compared favorably 
with Hu’s tabu search, genetic algorithm, and simulated annealing. 

INTRODUCTION

The optimal design of electromagnetic structures using 
global optimization techniques is a wide field of research. 
This is due to the fact that objective functions of this kind of 
problem are generally multimodal, non linear and non-
derivable ones, and classical optimization algorithms lead to 
poor results. 

Recently, probabilistic heuristic algorithms have been 
used as efficient and general approaches for the global 
optimization of multimodal functions with continuous 
variables in electromagnetic. These algorithms include 
simulated annealing (SA), genetic algorithms (GA), and tabu 
search (TS) methods. 

Only a few applications of tabu algorithm have been 
found in electromagnetic compared to SA and GA [1-4]. 
Nevertheless, lots of stochastic methods use memory table to 
avoid generating points too close to already existing points, 
especially when FE simulations are used. 

TS is based on the use of prohibition–based techniques 
and basic heuristic algorithms. Therefore, the main advantage 
of TS with respect to GA and SA, lies in the intelligent use of 
the past history of the search to influence its future search 
procedures. Since the method uses a tabu list for storing the 
past history of the search, the efficient structure of the tabu 
list is important for fast computation. 

In the proposed TS method, the tabu list contains all 
points and a prohibited zone around each point that depends 
on the value of its objective function and decreases as the 
number of iteration increases. Alternation of intensification 
and diversification phases allows to find the global optimum 
with a good accuracy. 

The first section presents the new tabu search method and 
details the generation of points, the tabu list properties, the 
intensification and diversification phases, and the algorithm 
parameters. The second section apply the new TS method to 
the problem 22 benchmark of the TEAM workshop and 
compare it with standard GA, SA and TS. 

NEW TABU METHOD

Tabu search is now a well known method. Details on the 
main implementation are referred in [1,2]. Differences with 
Hu’s TS (HuTS) and universal TS (UTS) are pointed out. 

Generating new points 

As no information on the location of optimum is available 
at the first iteration, points are generated in the whole design 
space using an uniform density of probability. 

For the next iterations, points are generated using the 
normal law. The density of probability is defined with: 

� �
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Where i�  is the standard deviation, best
ix  is the 

coordinate of the best point at previous iteration, and n  is the 
number of design variables. The standard deviation is chosen 
initially equal to 10% of design space in order to proceed to 
the intensification phase. This way, new points have more 
probability to be close to the best point. The standard 
deviation will be increased during the diversification process. 

To do that, points are generated using a random number 
between 0 and 1, and the function of repartition � �xP :

� �

� � � � 10andwith

,,11

����

���

��

�

randduupxP

nirandPxx
x

i
best
ii ��

 (2) 

HuTS and UTS use several neighborhoods, i.e. intervals 
and uniform densities of probability to generate points around 
the best one. It can be shown that this process is similar to our 
with an hyperbolic density of probability. 

Tabu list 

The tabu list contains all tabu areas. These areas are 
hyper-rectangles defined with a center and sides lengths for 
each direction, i.e. design variable. The center is a point 
already generated. The difficulty which arises is how to 
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determine the sides lengths of these hyper-rectangles. Some 
heuristic rules are proposed. As the probability to find the 
global optimum near good points is assumed to be higher than 
bad points, the side lengths depend on the value of the 
objective function. Also, the sum of tabu areas is chosen to be 
roughly the same whatever the number of iteration is. This 
means that the sides lengths � �gXl ,  of a tabu hyper-rectangle 
is computed with: 

� �
� �

� � nbest
g

L
i

U
i

gXf
Xf

c
xx

gXl 2,
1�

�

�   (3) 

Where X  is the center of the hyper-rectangle, U
ix  and 

L
ix  are respectively the upper and lower limits of the design 

variables, f  is the objective function to be minimized, g  is 

the number of iteration, c  is a constant and best
gX 1�  is the best 

point at previous iteration. 
The tabu list and side lengths have to be updated each 

time a new point is generated. No tabu area is removed from 
the tabu list but the areas sizes decrease when the number of 
iteration increases. 

Intensification and diversification 

Intensification and diversification are two interesting 
techniques to improve the power of TS. They make this 
method an effective one. Intensification allows exploring 
areas of search space, near of those characterizing the 
configurations of good quality visited before. Intensification 
enables the location of optimum with a good precision. 
Diversification seeks to search towards unexplored areas of 
the design space and generate configurations significantly 
different from those met before. That allows to find global 
optimum and not only local one.  

The algorithm proposed here begin with intensification. 
Indeed, at the beginning of each iteration, the standard 
deviation is set to 1/10 of the design space, i.e. 

10/)( L
i

U
ii xx ���  and the normal law assume that 68% of 

generated points are between i
best
ix ��  and i

best
ix �� .

As many points are generated close to the best one, the 
neighborhood of the best point becomes tabu and lots of 
points are rejected because they are inside tabu areas. If the 
rejected points represent more than 95% of generated points, 
the standard deviation is increase. This way, points are 
generated farer from best one and diversification begins.  

Algorithm  parameters 

Four parameters, characterizing the new TS algorithm, 
have an great influence on its convergence. They are the 
number of points generated at each iteration pN , the 

maximum number of iterations G, the constant c, and the 
relative accuracy of the optimum location. The following 
relations can be proved: 

n
pn

cN
Gaccuracyrelative

c �

�

� and1  (4)   

SMES OPTIMIZATION

To show the feasibility of the proposed algorithm in 
solving electromagnetic optimization problems, it is applied 
to the optimization of a superconducting magnetic energy 
storage (SMES), i.e. benchmark problem 22 described in [5]. 

Table I shows the results achieved with the new TS 
algorithm and other well-known stochastic methods. It can be 
seen that the proposed method uses less time, i.e. number of 
FE simulations,  and reach almost the same optimum as 
HuTS. 

TABLE I. OPTIMIZATIONS RESULTS

Method OF B²stray Energy R2 h22 d2 Time 
GA 0.090 7.668 179.19 3.04 0.24 0.386 2400 
SA 0.087 7.59 179.36 3.078 0.237 0.39 5025 
HuTS 0.0864 7.67 179.79 3.08 0.246 0.381 3821 
new TS 0.0864 7.78 179.99 3.08 0.254 0.37 1800 

CONCLUSION

A new tabu search algorithm for global optimization with 
continuous variables has been presented. The numerical 
results on problem 22 benchmark show that the proposed 
method not only obtains better optimal, but is also time 
saving compared with other stochastic methods. 
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Abstract – In this paper, a novel approach based on handling
constraints as objectives together with a modified Parks & Miller
elitist technique, to solve constrained Multiobjective optimization
problems, is analyzed with Niched Pareto Genetic Algorithm. The
performance of this approach is compared with the classical procedure
of handling constraints that is the exterior penalty function method.
Results are obtained applying both procedures of handling constraints,
with and without elitism. Especially when using the modified elitist
technique, simulation results suggest the effectiveness of the proposed
technique.

INTRODUCTION

When genetic based algorithms are used, the most
common way of handling constraints is by using penalty
techniques like the exterior penalty method. There is a
weakness in this classical approach because good values for
the penalty parameters are not known.

In this paper, constraints in constrained multiobjective
optimization problems (CMOPs) are handled as objectives
and the resulting problem is solved by the Niched Pareto
Genetic Algorithm (NPGA). The original NPGA was
modified by incorporating the Parks & Miller elitist
technique (P&M) [1], which needed some changes when
constraints were treated as objectives. The required changes
were essential to avoid convergence toward an infeasible
space.

Two analytical test problems, TBU [2] and CPT7 [3],
that were designed with special features to difficult the PO
front search, are chosen to compare both approaches of
handling constraints as objectives and using penalty
function. The methodology adopted here to compare the
results from both approaches made use of three quantitative
metrics: generational distance (GD), coverage relationship
(CR) and timing analyses [4]. This choice enabled a
realistic sight of the techniques discussed, pointed out the
advantages of the new approach. After that, both classical
and new procedures were applied to find the nondominated
front by solving a CMOP based on the TEAM22 [5].

MATHEMATICAL FORMULATION

The multiobjective optimization involves a set of k
decision variables, m objective functions and n constraints.
In terms of minimization we can write this problem as:

minimize:

( ) ( ) ( ){ }T
m xfxfxff ,,, 21 L= (1)

subjected to:

( ) ( ) ( ){ } { }TT
n xgxgxgg 0,,0,0,,, 21 LL ≤= (2)

where { }T
kxxxx ,,, 21 L= .

As NPGA is not capable to deal directly with
constrained problems, some way must be found to handle
the constraints. In this paper, two approaches are
considered. First, the constraints are incorporated to the
fitness function by using penalty functions. This procedure
will be denoted here as classical approach (CA). Initially,
the original optimization problem is rewritten as an
unconstrained one. As an example, for the ith objective, a
pseudo-objective function ffi can be written as:

( ) ( )( )∑
=

+
+=

n

j
jii xgxfxff

1

2)( ρ , (3)

where ρ is a penalty parameter associated and ()+ denotes
that only violated constraints are considered.

Second, the n constraints are transformed in n more
objectives. To avoid confusion, this approach will be
denoted here as objective approach (OA). Mathematically,
the original problem is rewritten as:

minimize:

( ) ( ) ( ) ( ){ }T
nm xgxgxfxff ,,,,, 11 LL= . (4)

MODIFIED PARKS & MILLER ELITISM

To improve the NPGA performance the Parks & Miller
elitist technique [1] was used. It consists in incorporating
the efficient individuals of the on-line population (Pon) to
the off-line population (Poff), at each generation. When Poff

size exceeds a threshold, the dominance criterion is applied,
eliminating all dominated solutions. If Poff size continues
bigger than the threshold, a distance criterion is applied. It
is based on measuring the distance between the off-line
individuals, taking two per turn, and if they are within some
distance one of them is discarded, chosen randomly. This
distance is measured in the objective space. The individuals
of Poff are reinserted in Pon, when the size of Poff is bigger
than a threshold, to improve the convergence. This
approach works well when the constraints are considered in
the classical approach. Although infeasible individuals do
not represent the wished PO front, keeping them in the on-
line population seems to be a good idea because infeasible
points near the PO front might be lost during the
optimization process. When using constraints as objectives,
P&M elitism does not work properly because sometimes the
Poff may be composed by a great deal of infeasible points,
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guiding the search in a wrong way. To avoid this drawback,
P&M was modified by two additional procedures to avoid
convergence to the infeasible region: i) when eliminating
individuals of Poff by the distance criterion, infeasible points
are discarded if they are near to a feasible one and ii) when
Poff size is bigger than a threshold, all infeasible points are
discarded. This modified P&M will be denoted by M-P&M.
The nondominated set without these procedures can
partially converge toward an infeasible region due to
reinserting many infeasible individuals of Poff in Pon. So, in
the elitism process the constraints are not always viewed as
objectives. When using the classical approach (penalty
functions) these procedures are not needed because just
feasible individuals are placed in Poff.

ANALYTICAL TEST FUNCTIONS

The first test function, TBU [2], has the following
properties: i) the feasible region is non-convex and ii) some
feasible PO solutions lie on boundaries between the feasible
and infeasible regions. This problem was simulated with
population size and generation number equal to 80 and 100,
respectively. The main property of the second test function,
CPT7 [3], is the disconnected PO front. This problem was
simulated with population size and generation number equal
to 40 and 400, respectively. The NPGA was executed
twenty times for each test problem. The arithmetic mean of
these results using the metrics as used in [4] are shown in
Table I and II, respectively, where OA denotes the approach
of handling constraints as objectives, CA the classical
penalty approach, P&M the Parks&Miller elitism and M-
P&M the modified Parks&Miller elitism as described
before. The comparisons between OA and CA were done
with and without elitism separately.

TABLE I -RESULTS OF TBU PROBLEM.
With Elitism Without Elitism

Metric OA (M-P&M) CA (P&M) OA CA
CR 100% 99.33% 100% 57.01%

(Mean) (27.66) (22.40) (16) (6.30)
GD 0.0155 0.0152 0.0190 0.0328

Time 1.72 1.28 1.78 1.16

TABLE II - RESULTS OF CPT7 PROBLEM

With Elitism Without Elitism
Metric OA (M-P&M) CA (P&M) OA CA

CR 100% 0.0% 100% 0.0%
(Mean) (12.5) (0.0) (0.1) (0.0)

GD 0.0025 0.0615 0.2506 0.9315
Time 1.27 1.23 1.15 1.02

The results in Table I with elitism (second and third
columns) show that both approaches present comparable
results. This can be seen from the CR and GD metric
values. However, the front was better represented (see the
mean of nondominated solutions found) when using the
constraints as objectives. In the other situation, without
elitism (fourth and fifth columns), the advantages of using
constraints as objectives are clear. It is observed that the

computing time for OA increases proportionally with the
number of constraints, but it is not significant for real world
problems.

For the second test problem, an adequate front was only
found by using the new approach, that is, OA together with
the M-P&M technique. This is clearly shown in Table II.

CONSTRAINED MULTIOBJECTIVE OPTIMIZATION IN ELECTROMAGNETICS

The TEAM’22 problem with three continuous variables
was chosen to demonstrate the performance of the new
approach in CMOP in electromagnetics, for further details
see [5]. This problem was solved using NPGA with both
new and classical approaches. In both cases the modified
and standard P&M were used and the population size and
generation number were fixed to 30. The results are
presented in Fig. 1. The front found using constraint as
penalty function was completely dominated by that obtained
using constraint as objective.
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Fig. 1 – Nondominated sets found for the TEAM22 problem.

The results obtained by handling constraints as
objectives when solving both test and TEAM’22 problems
demonstrate that the new approach works better than the
classical method of handling constraints using penalty
functions. A complete analysis and more results will be
given in the full paper.
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Abstract – This paper addresses the extraction of sensitivity
information from a modified ANFIS model. The modified ANFIS
topology was designed to avoid the dimensionality problem of the
classical ANFIS. The modified ANFIS topology is more appropriate for
optimization problems, particularly when dealing with problems with a
high number of variables. An analytical and an electromagnetic
optimization problem are discussed. The results show the effectiveness of
this new approach.

INTRODUCTION

The main problem of the classical ANFIS model is its
computational effort [1]. The rules are generated with all
possible combinations of premisses, thus the ANFIS model
has a spatial exponential complexity. The number of
generated rules N for a system with n inputs and P premisses
is N = Pn.

In the modified ANFIS topology, a layer of perceptrons
replaces the classical ANFIS first layer, changing the rules by 
weights that must be adjusted. In the classical ANFIS case the 
number of adjustable parameters is a function of Pn. So, for a 
given number of inputs the possible number of adjustable
parameters is defined. On the other hand, in the modified
ANFIS case the numbers of perceptrons is not a function of
the number of variables. In this case it is possible to generate 
a network better adjusted with the problem to be solved.

In this paper, the extraction of the sensitivity information
when using the modified ANFIS topology is addressed. This
sensitivity information can be used to improve the
convergence process of deterministic optimization algorithms
avoiding the high cost of derivative evaluations. The
formulation concerning sensitivity extraction using the
classical ANFIS can be found in [2,3].

MATHEMATICAL FORMULATION

The output y of the modified ANFIS considering n inputs 
and m perceptrons is calculated as: 

∑ ∑∑
= == 

















×





φ=

m

1j

n

0i
iij

n

0i
iji XpvXy (1)

where ( ).φ is the activation function (e.g. hyperbolic tangent,
gaussian function, …), p  is a matrix of consequent

parameters, v is a matrix of perceptron weights and X is the

vector of input variables. Figure 1 shows the topology of the
modified ANFIS model. 

Calculating the first derivative of (1) with respect to each 
input variable Xi, the following equation can be obtained:
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Finally, the gradient of the output y can be found using
Eq. (3). 
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Then, it is straightforward to extract the sensitivity
information from the proposed modified ANFIS network. A
detailed analysis of the structure of the modified ANFIS
network and the sensitivity extraction will be given in the full 
paper.

ANALYTICAL PROBLEM

The formulation presented before was applied to evaluate
the derivatives of the Rosenbrock’s function, which is
mathematically stated as:
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( ) ( ) ( )222 1100, xxyyxF −+−= (4)

where ]2,2[x −∈  and ]2,2[y −∈ . The analytical derivatives

are given by:

2x2xy400x400
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(5)

2x200y200
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∂
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(6)

To represent the surface accurately, a modified ANFIS
with 20 neurons is trained using 144 evenly sampled points.
The root mean squared errors (RMSE) for the Rosenbrock’s
function and both the derivatives were respectively 0.03, 0.76 
and 0.37. The approximated derivative surfaces are presented 
in Fig. 2. It is observed the superposition of the analytical and 
extracted values, showing the effectiveness of the modified
ANFIS model.

(a) (b)
Fig. 2 Gradient Surface (analytical (o), extracted (+))  for 

(a) x/F ∂∂  and (b) y/F ∂∂ .

SENSITIVITY INFORMATION OF AN ELECTROMAGNETIC DEVICE

A loudspeaker magnet assembly unit with seven design
variables is investigated as described in [2]. The magnetic
flux density is calculated using the finite element method.
The function and its derivatives were extracted using 169
points. Table 1 show the results achieved using both classical 
(as in [2]) and the modified ANFIS topology.

TABLE I - ERROR ON THE RESULTS FOR THE LOUDSPEAKER.
ANFIS Model RMSE

F
1xF/∂∂ 2xF/∂∂

Modified 0.00041 0.067 0.001
Classical [2] 0.00056 0.682 0.837

Both models give good results when compared with the
numerical derivatives as given in [2]. However, it can be seen 

that the error using the modified ANFIS model is lower than 
that given by the classical model, confirming the
effectiveness of the modified ANFIS. This technique for
sensitivity extraction, which has a lower cost if compared
with gradient evaluation, can be helpful in the optimization
process. The surfaces for the approximated derivatives are
presented in Fig. 3.

(a) (b)
Fig. 3 Gradient Surface (numerical (o), extracted (+))  for

(a) 1x/F ∂∂  and (b) 2x/F ∂∂ .

CONCLUSION

The results obtained show the effectiveness of the
modified ANFIS model to extract sensitivity information.
This information can be used in deterministic optimization
process. One of the disadvantages of deterministic methods is 
the cost to evaluate the gradient that sometimes can be
prohibitive. However, using this formulation the gradient
information is not directly evaluated, decreasing
computational effort. Moreover, one of the advantages of the
modified ANFIS topology is that it does not have the spatial
complexity of the ANFIS topology. In the case of dealing
with problems that have high number of optimization
variables, the modified ANFIS topology should be more
effective.
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Abstract—This paper discusses the application of Response Surface 
Methodology (RSM) to design optimization for brushless dc permanent 
magnet motors to reduce cogging torque. The feasibility of using RSM 
with finite element method (FEM) in the practical engineering 
problems is investigated by the computational examples and the 
comparison between the fitted response and the results obtained from 
an analytical solution.  

INTRODUCTION 

Cogging torque is introduced by the interaction between 
the slot and the magnets. It has an undesirable effect on the 
performance of the spindle motor, especially in the high 
precision systems such as spindle motor for Hard Disk Drive 
(HDD). Suppression the cogging torque to an acceptable 
smoothness level through the appropriate combination of the 
structure parameters can be an effective way. 

Response surface methodology (RSM) is a collection of 
statistical and mathematical techniques useful to find the 
“best” value of the response [1]. It is now recognized as an 
effective optimization approach for design of electrical 
devices when used in combination of the numerical method 
for product performance simulation [2][3]. Generally, a 
polynomial model is constructed to simulate the relationship 
between the performance and the design parameters. 
Therefore this model is used to predict product performance 
with certain design variables to carry out the optimization 
design process. The quality of the fitted model is then 
evaluated by checking the statistics index which are based 
on the experimental data from the required investigation 
points in RSM. The approach is expected to produce useful 
results for optimization tasks. However, report on the 
feasibility of the method has been rare in the literature 
although there is awareness to certain degree that the fitting 
quality of the response surface is vital to get meaningful 
results using the method and the quality depends on the size 
of the region in which the design parameters may vary. This 
paper reports a study of the feasibility of the method based 
on comparison of the fitted response surface against the 
performance response obtained from a closed form 
analytical solution [4] which can produce performance 
response in wide ranges of parameter variations. 
Computational examples are given in this paper.  

DESCRIPTION OF DESIGN PROBLEM 

In this paper, the motor under investigation is a 6-pole and 
9-slot BLDC spindle motor used in HDD. In original design, 
the airgap is 0.2mm, the thickness of the surface mounted 

magnet is 1.05mm and the iron yoke outside is 1.17mm 
thick. The slot opening is 1.18mm. 

The pole arc to pole pitch ratio (�p) and the tooth face 
angle (�t) are the main control factors (design parameters) 
influencing the cogging torque. First a relatively large 
design space is selected, in which �p varies from 0.5 to 1 
and �t from 32 deg to 35 deg.  The flux density distribution 
obtained from FEM is showed in Figure 1.

Figure 1. Flux distribution of 6-pole 9-slot motor

The maximum cogging torques are computed. The ‘true’ 
response surface, obtained from the analytical solution, for 
the cogging torque with respect to the design parameters are 
plotted in Figure 2. Within the given design space, a valley 
near p� � 0.7 can be clearly observed. The optimum setting 
of the design parameters be easily found as �t = 35 deg, and  
�p = 0.73. 
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Fig. 2. Response surface of cogging torque 

DESIGN, SIMULATION AND ANALYSIS 

In this stage, RSM is used to fit the response model. A 
quadratic approximation model is commonly used to 
construct the fitted response surface. In general, the response 
model can be written as Equ. 1. 

2 2
2

0
1 1

i i i i
i i

y x x� � � �

� �

� � � �� �                     (1) 
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where �i, � i and � i are coefficients for the control variables. 
The central composite design (CCD) is applied to 

construct the above second order polynomial model [2]. 
CCD consists of three portions: a complete 2k or fractional 
2k-m first order factorial design which the factor levels are 
coded into –1 and 1; axial points at a distance � from the 
center point and one design center point. Assume the initial 
design point is �t =32.5 and �p =0.9. The center design point 
is at �t =33.5 degree, �p =0.75. The control variable matrix 
is showed in Table I (In this CCD scheme, k =2, so �=�2).
FEM based simulation is used to obtain the responses with 
respect to the CCD experimental design. In the FEM 
analysis the permeability of the soft-magnetic components 
are set to be extremely large to imitate the conditions under 
which the closed form analytical solution is derived.  

TABLE I. DESIGN PARAMETERS 
Control factors -� -1 0 1 �

x1 �t 32.44 32.75 33.5 34.25 34.56 
x2 �p 0.644 0.675 0.75 0.825 0.856 

The second-order regression model is fitted as: 
2 2

1 2 1 2y=56.026-2.589 32.563 0.0382 22.020x x x x� � ��  (2) 
The fitted response surface is showed Fig. 3.
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Fig. 3. The fitted second-order model 

To check the quality of the fitted response surface, the 
analysis of variance (ANOVA) is computed as given in 
Table2.

Table 2. Analysis Of Variance 

Source DF SS MS F 2R 2
AR

Regression 4 0.2307 0.0577 10.38 0.9157 0.8311 
Residual 4 0.0222 0.0056    

Total 8 0.2531 0.0316    

The R2 value of 0.9157 means that 91.75% of the total 
variation in torque performance may be explained by the 
regression surface relating it to the design variables. 2

AR of 
0.8311 indicates that the estimate of the error variance 
provided by the residual mean square is 16.89% of the error 
variance estimate using the total mean square. Compare the 
fitted response with the original response, it can be observed 
that the fitted response surface cannot adequately reflect the 
dip in the original response surface even though the statistics 
data shows the fitting is particularly ‘bad’.  

When focusing on a smaller region in the design space as 
shown in Fig. 4, such that �t � [32 deg,  35 deg] and �p � [ 
0.75, 1], redo the surface fitting using RSM, the fitted model 
is given in equation (3) and the fitted surface is showed in 
Fig. 5. 

2 2
1 2 1 2-31.948 1.568 14.442 - 0.0242 7.19y x x x x� � � ��           (3) 

The analysis of variance is given in Table 4. 
Table 4. Analysis Of Variance 

Source DF SS MS F 2R 2
AR

Regression 4 0.4270 0.1067 31.354 0.9709 0.9381 

Residual 4 0.0136 0.0034    
Total 8 0.4398 0.0549    

From the Table 4, we can see that, 97.09% of the total 
variation can be explained by the regression model. 
Apparently the quality of the fitting surface has improved. 
Using the fitted model the optimal design point (optimal 
setting of design parameters) can be easily obtained as 
�t=35 deg, and �p=0.75 which coincides with the optimal 
settings obtained from the original response surface.  
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CONCLUSION 

The present work demonstrate that the RSM approach relies 
critically on the quality of fitted model in the area of 
interests, and it can be difficult for a given RSM scheme to 
achieve necessary quality when the true response in the 
given region is complex. Caution must be taken in the 
application of RSM in conjunction with FEM or other 
numerical techniques for digital validation when the true 
response is unknown to the designers.  
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Abstract— We present a new algorithm for the numerical so-
lution of problems of electromagnetic or acoustic scattering by
large, convex obstacles. This algorithm combines the use of an
ansatz for the unknown density in a boundary integral formula-
tion of the scattering problem with an extension of the ideas of the
method of stationary phase. We present results showing the high
order convergence of the algorithm as well as its asymptotically
bounded computational complexity as the frequency increases.

I. INTRODUCTION

However efficient they may be, direct numerical methods
for solving scattering problems require a fixed number of dis-
cretization points per wavelength λ, and thus exhibit an O(kn)
computational complexity for an n-dimensional discretization
(where k = 2π/λ is the wavenumber).

This paper introduces a solver with an asymptotic O(1)
computational complexity for surface-scattering problems
by convex obstacles in two or three dimensions, using a
combined-field integral equation [1]. Our approach relies on
two main results.

Firstly, the boundary integral equation is transformed to ex-
plicitly capture the rapidly oscillating phase progression of the
scattered waves. For this purpose, the original unknown in the
boundary integral formulation is replaced by the product of
an ansatz derived from the asymptotic theory [2] and a slowly
varying residual. This residual can then be represented by a
number of degrees of freedom independent of the frequency.
This idea is similar to those presented by Ling [3] for partial
differential equations and by James [4] and others for integral
equations.

Secondly, an extension of the method of stationary phase
is used to reduce the support of integration to a subset of the
scatterer boundary. This localized integration scheme can be
seen as a natural link between high-frequency approximate,
non-convergent methods such as the Kirchhoff approximation
and a direct method of moment method. The reduced inte-
gration support is shown in Section IV to be proportional to
the wavelength, leading to a number of integration points also
independent of frequency. The resulting convergent integral
method can evaluate accurately in a personal computer scat-
tering problems throughout the electromagnetic spectrum; see
Tables I and II.

II. BOUNDARY INTEGRAL FORMULATION

We consider the scattering of an incident plane wave
ψinc(r) = eikα·r on a convex impenetrable obstacle D (α is

Work supported by AFOSR, DARPA and NSF. C. Geuzaine is a Postdoctoral
Researcher with Caltech’s Applied and Computational Mathematics Dept. and
with the Belgian National Fund for Scientific Research, University of Liège,
Montefiore Dept. B28, B-4000 Liège, Belgium.

the direction of propagation). This problem, which is governed
by the Helmholtz equation, can be treated by using the follow-
ing single layer potential and its normal derivative:

(Sϕ)(r) =
∫

∂D

Φ(r, r′)ϕ(r′) ds(r′), (1)

(K ′ϕ)(r) =
∫

∂D

∂Φ(r, r′)
∂ν(r)

ϕ(r′) ds(r′). (2)

Here Φ(r, r′) = eik|r−r′|/(4π|r − r′|) in three dimensions
and Φ(r, r′) = i/4 H

(1)
0 (k|r − r′|) in two dimensions, and

ν(r) is the external normal to the surface at point r. Explic-
itly, given the values of the incoming wave ψinc(r) on ∂D, the
scattered field can be easily found once the integral equation

1
2
ϕ(r)−(K ′ϕ)(r)−iγ(Sϕ)(r) =

∂ψinc(r)
∂ν(r)

+iγψinc(r)

(3)

has been solved for r ∈ ∂D. In (3), γ is an arbitrary positive
constant.

III. ANSATZ

In the present convex case the high frequency ansatz is given
by

ϕ(r) = ϕslow(r)eikα·r, (4)

where the new unknown ϕslow(r) is assumed to be a slowly
varying function of r ∈ ∂D. Note that in the case of an elec-
tromagnetic TE formulation, this ansatz is precisely the cur-
rent of the physical optics approximation. Introducing (4) in
(3), and dividing by eikα·r, we obtain a new boundary integral
formulation involving the operators

(S̃ϕ)(r) =
∫

∂D

Φ(r, r′)eikα·(r′−r)ϕ(r′) ds(r′), (5)

(K̃ ′ϕ)(r) =
∫

∂D

∂Φ(r, r′)
∂ν(r)

eikα·(r′−r)ϕ(r′) ds(r′). (6)

The kernels in (5) and (6) are the only highly-oscillatory func-
tions in this new formulation. Being a slowly varying func-
tion, the unknown density ϕslow can be represented, to within
any prescribed tolerance, by a fixed set of discretization points,
independent of frequency.

IV. LOCALIZED INTEGRATION

To apply the ideas of the method of stationary phase [5] we
obtain the critical points of the integrals in (5) and (6). The
details of such an evaluation depend on the particular kernels
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Fig. 1. Functions fA(x)eikxp

and fε(x)eikxp

with envelopes fA and
fε, respectively.

under consideration, but in the present case, for r �= r′, both
kernels in (5) and (6) behave asymptotically as

eik[|r−r′|+α·(r′−r)] = eikφ, (7)

i.e. as the kernel of a generalized Fourier integral with phase
φ. The critical points are

• the target (observation) point r itself;
• the stationary points, i.e. the points where the phase φ

in the integrals has a vanishing gradient. Note that these
stationary points vary as a function of the target point;

• the shadow boundaries, where the second derivative of the
phase vanishes.

The method of stationary phase then tells us that, asymptot-
ically, the only relevant contributions arise from the critical
points. In order to build a convergent method for the whole
frequency range, we introduce a localized integration proce-
dure around these critical points.

As an example, let us consider the problem of integration
of the one-dimensional smooth function fA(x)eikxp

(see Fig-
ure 1). For the smooth cutoff fε(x)eikxp

in the interval [−ε, ε],
one can show that [6]:
∫ A

−A

fA(x)eikxp

=
∫ ε

−ε

fε(x)eikxp

+O((kεp)−n), ∀n, p ≥ 2.

A similar error estimate for the integrals (5) and (6) can be ob-
tained by expanding φ in (7) around the critical points. This
provides a criterion for the localized integration: the target
point is to be covered by a region Ut of radius proportional
to the wavelength λ; for each target point, the 	-th stationary
point is then covered by a region U �

st of radius proportional to√
λ, while the shadow-boundary set is covered by Usb: the set

of points whose distance to the boundary is less than a radius
proportional to 3

√
λ. A partition of unity (POU) [7] is used to

smoothly split the integral over ∂D into a number of integrals
over the subsets Ut ∪ U �

st ∪ Usb of ∂D. The integral outside
these subsets is neglected.

In order to obtain a high-order algorithm, the (singular) in-
tegrals in the region Ut is evaluated in two dimensions as in [8]
and in three dimensions as in [7]. Note that the number of inte-
gration points in Ut, U �

st and Usb being proportional to λ,
√

λ

and 3
√

λ respectively, the total number of integration points is
independent of the frequency.

V. NUMERICAL RESULTS

Tables I and II show results of a preliminary version of the
two-dimensional high-frequency integral algorithm, as applied

TABLE I
SCATTERING BY A CIRCULAR CYLINDER OF RADIUS a, USING

100 UNKNOWNS.

ka GMRES Iter. Mean Square Err. CPU (s)
1 9 8.8e − 12 < 1
10 17 9.2e − 12 < 1
100 31 2.5e − 5 8
1000 30 2.1e − 4 84
10000 33 6.6e − 4 83

TABLE II
SCATTERING BY A CIRCULAR CYLINDER OF RADIUS a, WITH

ka = 150: ERROR CONVERGENCE.

Unknowns GMRES Iter. Max. Error
25 13 4.4e − 3
50 23 1.2e − 3
100 31 1.2e − 4
200 34 4.4e − 6
400 39 1.0e − 9
800 44 1.0e − 12

to a circular cylinder of radius a. Errors were computed by
comparison with an exact solution for the integral equation.
This example illustrates the asymptotic bounded complexity
(the error for k = 1000 is roughly equal to the error for
k = 10000, using the same number of unknowns and the same
number of integration points, leading to identical computation
times) as well as the high order convergence of the solver. As
illustrated by Table I, the high-frequency solver is well condi-
tioned and requires a small number of GMRES iterations for
arbitrarily large wave numbers.

Generalizations of the ansatz (4) which are valid for non-
convex scatterers have been given [9]. Extensions of our high-
frequency methods to non-smooth geometries (containing sin-
gularities such as corners and edges) will be presented in the
full paper.
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Abstract.  A full solution to the radiation problem of the microstrip antenna of 
arbitrary shape using loop star basis function is presented.  The solution 
begins by the formation of mix-potential integral equation.  The integral 
equation is solved by method of moment using loop star basis functions and 
layered medium’s Green’s functions.  A new “mesh-neighboring” 
precondtioner is implemented to solve the resulting matrix equations 
efficiently.  Few numerical examples are presented to validate the present 
approach. 

 
I.   INTRODUCTION 

INTERGRAL equation formulation in conjunction with the 
method of moment (MoM) has become a popular approach for 
the electromagnetic analysis of microstrip antenna and 
monolithic millimeter and microwave integrated circuits 
(MMIC) over the years.  The electrical field integral equation 
(EFIE) is the preferred choice for microstrip problems.  
However because EFIE contains derivatives, it becomes 
important to employ proper basis functions for the MoM, 
otherwise fictitious charges will be induced.  The Rao-Wilton-
Glisson (RWG) basis functions [1] have been famous of their 
property of being free of fictitious charges, but they are ill 
posed at low frequency [2].  On the contrary, it has been 
shown that even at the DC limit, using loop star basis 
functions the MoM matrix is still well conditioned [2].  Loop 
star basis functions are the linear combination of the RWG 
basis functions.  Therefore loop star basis functions “inherit” 
all the properties of the RWG, while the use of loop star basis 
function circumvents the RWG’s low frequency instability.  
 

II. THEORY 
First the electric field integral equation is derived to be 

' '2 ' ' '
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� �� � �� � � � � �� 	
 �� �  (1) 

(1) is solved with Galerkin’s MoM, where both basis function 
and testing function are expressed in term of loop star basis 
functions.  The assembly process is in fashion used in FEM 
(finite element method) community.  Namely, 
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and p� , q�  are the p-th and q-th basis function, respectively. 
    Furthermore, it is important to recognize that without an 
effective preconditioner, the matrix equations result from (3) will 
be difficult to solve using iterative matrix solution such as 
Conjugate Gradient (CG) like methods. In the paper, we propose a  
“mesh-neighboring” preconditioner that is both effective and 
efficient when used together GMRES to solve the final matrix 
equations. The “mesh-neighboring” preconditioner starts by 
constructing a sparse version of the impedance matrix � �sZ , 
which includes only “strong” coupling of triangle pairs, viz. 
� � � �� �
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S(m) denotes the set of triangles that have “strong” couplings with 
respect to triangle, m� . ),( nmD ��  is the distance between �m 
and �n, from center to center; hm is the characteristic length for  �m 
; havg is the average characteristic length of the mesh and N is the 
number of the unknowns. Once the sparse matrix is formed, then 
the preconditioner is generated by 

� �
1 1

2 2sM D Z D
�

�

� �� � � ,  where D =diag (Zs) .   (5) 

 
II.  NUMERICAL RESULTS 

 For the first example considered in this section, the structure is 
situated on the infinite dielectric slab of the dielectric constant �r = 
(2.62, 0.0), and of thickness 0.007�.  It deals with a circular patch 
antenna with two stubs, as in figure 1. The various components of 
far fields are compared with [3], as shown in figures 2 and 3.  The 
results agree very well. Furthermore we note that the proposed 
preconditioner results in superior convergence of GMRES.  For 
this example, with the tolerance of 10-4, it only takes 13 iterations, 
as opposed to more than 500 iterations without precondtioner. 
The second example deals with a series-fed microstrip antenna 
arrays, with the parameters specified in fig. 4. We compare our 
result with both theoretical solution [4] and experimental 
measurement [5], as shown in fig. 5.  As seen from figure, they 
agree quite well. 
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Fig. 1  A circular patch antenna with two stubs 

 
 
Fig. 2  Current distribution of the circular patch 

 
 
 
 
 
 
 
   

 
 
 
 
 
 

 
 

Fig. 2  20 ||log10 �
E  at � = 0 for –90 �  � �  90. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3  20 ||log10 �
E  at � = 90 for –90 �  � �  90. 

 

 
Fig. 4  A series-fed microstrip array L = 10.06 mm, W = 11.79 mm, L1 = 23.6 mm, 
L2 = 13.4 mm, L3 = 12.32 mm, d1 = 3.93 mm, d2 = 1.3 mm, thickness of substrate 
h = 1.5748 mm, �r = 2.1, f = 9.42 GHz.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Fig. 5  The E-plane radiation pattern of the series-fed microstrip array 
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Abstract--The traditional design methods restrict 
planar microwave filter structure to regular shapes so that 
the results may not be optimal. In this paper, we present a 
novel design approach that can take into account of 
arbitrary planar structures. This approach is based on the 
powerful and flexible finite element method (FEM) as the 
3-dimensional field simulator and the genetic algorithm 
(GA) as the optimization engine. Using this design 
approach, new filter structures can be invented 
automatically with the enhanced performance. 
 

INTRODUCTION 
 

Planar microwave filters play a very important role in 
many microwave applications. Emerging applications such as 
wireless communications continue to challenge microwave 
filter design with ever more stringent requirementshigher 
performance, smaller size, lighter weight, and lower cost. The 
traditional design is based on the network synthesis techniques 
[1]-[3]. After frequency transformation and prototype 
selection, the normalized lumped elements of lowpass 
prototype can be determined according to the desired 
specifications. Then, the planar distributed elements of simple 
shapes are used to approximate the lumped elements. This 
method restricts the distributed elements to regular shapes, in 
most cases, rectangular strips. Since the equivalent circuit 
analysis of irregular shapes is very complicated, only some 
simple shapes can be used as building blocks to design filters. 
Often higher performance filers require higher orders structure 
but higher orders structures results in larger size, higher power 
loss and higher cost. It is always desirable to achieve higher 
selective performance within a smaller structure and with a 
smaller loss.  

In this paper, a novel design approach is proposed for 
optimal planar filter design. In this approach, the three-
dimensional finite element method (FEM) [4],[5] is use for 
accurate computation of electric fields and the genetic 
algorithm  (GA) [6] is as the optimization engine. Both FEM 
and GA are powerful and flexible for their tasks. FEM is very 
popular and powerful for problems with arbitrary structures 
and material profiles. GA is a stochastic search and 
optimization technique modeled on the mechanics of 
biological genetics and natural evolution. GA can be used to 
optimize large and complicated problems.  

In this work, GA is used to optimize the shape of filter. 
For each shape, FEM is utilized to computer propagation 

response. The combination of FEM and GA would greatly 
increase the design capability. The new design approach will 
be much more flexible than traditional ones and novel filters 
can designed with improved performance which cannot be 
achieved before. 
 

FEM/GA DESIGN APPROACH 
 

As illustrated in Fig. 1, the filter model is an planar 
structure with arbitrary metal patch shape enclosed in a 
metallic rectangular box except two ports. In the enclosed 
domain, the lower part is the substrate, and the upper part is 
air. The conducting structure includes two section 50 Ω strips 
connected with two ports and a filter section of arbitrary 
shape. Fig. 1(b) illustrates a possible shape of the filter section 
of the model. We divide the whole model into a number of 
rectangular finite elements. The filter section will be 
automatically created and optimized by genetic algorithm that 
only needs to optimize a vector with 1’s and 0’s, for examples, 
1 means with metal deposition and 0 means no metal on the 
substrate surface of an particular element.  

 

Port 1 Port 2

Fig. 1: Structure of Planar Filter (a) Planar Filter (b) Conductor Plane

PEC

substrate

free space

conductor plane

conductors

substrate

(a) (b)

 
For the fitness evaluation, it replies on the output to input 

response against frequencies from the FEM simulator. The 
FEM simulator calculates the electric fields for each particular 
shape and sends S-parameters back to the GA optimizer for 
fitness calculations. As the GA iteration goes on, the optimal 
filter structure may be automatically invented without human  
interference. 
 

FEM FORMULATIONS 
 
A. 2.5D Modal Pattern 

In order to get the modal patterns at the input port, one 
may solve an eigenvalue problem based a 2.5D model. From 
Maxwell’s equations, one can easily establish a variational 
formulation (1)  
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Ω denotes the cross section of the structure whose boundary is 
comprised by the electric wall Γ.  

Using the transformations mentioned by Lee et al. [4], 
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After applying the edge and nodal finite element 
discretization, the eigenvalue problem can be obtained and 
solved. 
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B. 3D formulation 
 

For the 3-D boundary-value problem, the equivalent 
variational problem is 

1 2( ) ( ) ( )F F F∗ ∗= +E E E∗
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                           (6) 
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F ndsµ∗ − ∗= − × ∇× ⋅∫E E E                    (8)                                                            This paper present a novel approach for innovative 

microwave planar filter design. The powerful FEM and GA 
tools are combined together to search for the optimal filter 
structures. Complete solution and design results will be 
presented at the conference and shown in the full paper. 

By using the transfinite element method mentioned by Lee [5], 
the electric field at each port surface can be described as 
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The final system of 3D problem is expressed in matrix form as 
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Substituting the modal pattern obtained in the 2.5D problem 
into the system above, one can solve for the electric field 
distribution and S-parameters simultaneously.  
 

NUMERICAL RESULTS 
 

Fig.2 shows the numerical result of the field distribution 
of the dominant quasi-TEM mode of the shielded microstrip 
line on the cross section at the input port. The electric field 
distribution is calculated by using the formulation of 2.5D 
problem.  

1 21
1

25

Fig. 2: Vector plot for the dominant mode  on ports

 
We will present the 3D FEM solution and optimal design 

results for the filter structures.  
 

CONCLUSIONS 
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Abstract - Boundary integral formulations are implemented for the 
electromagnetic scattering of laser radiation from dielectric cylinders of 
arbitrary cross-section.  Because of the optical frequencies involved, 
problem size is controlled by a judicious choice of element size.  Results 
for the more compute intensive Galerkin method are generated for 
comparison against the less time consuming Moment method using 
linear isoparametric boundary elements.  Singular kernels are 
integrated numerically using a technique that converges rapidly.  
Scattered intensities generated for both TE and TM polarizations on 
circular cylinders compare extremely well with analytic far field 
predictions. 
 

INTRODUCTION 
 

The boundary integral equation method has been shown 
to be a powerful simulation tool to compute radiation 
phenomena from conducting scatterers of arbitrary shape [1].  
Problem dimension is significantly reduced by defining the 
problem in terms of the dependent variable distribution on the 
boundary rather than within the domain as in the volume 
integral method.  The use of the Galerkin method for matrix 
discretization ensures a more accurate averaged solution 
rather than the discrete point-collocation philosophy of the 
Moment method [2]. The major difference is that the fields 
computed in the inter-nodal regions may show oscillations 
using the latter method if the maximum element size is 
exceeded.  This criterion is typically �/10, although it may be 
relaxed at lower frequencies.  With the Galerkin method and 
proper treatment of the kernel singularity, this criterion can be 
further relaxed to �/4.  At optical frequencies, this 
improvement leads to significant reduction in overall problem 
size. 

In this paper, we consider a laser scattering application 
where the backward scattered intensities within a 25-degree 
range are used to infer important in-situ diagnostic 
information on scatterer cross-sections.  Due to the geometric 
aspect ratio, the problem is simplified to consideration of 2D 
integral formulations for dielectric cylinders with orthotropic 
material properties.  The TE (transverse electric) polarization 
case is formulated in terms of a coupled set of two MFIE 
(magnetic field integral equation) using Green’s theorem.  
The corresponding TM (transverse magnetic) polarization 
case is posed in the EFIE (electric field integral equation).  
Kernel singularities involve Hankel functions of the first and 
second kind, and are treated using a tailored numerical 
quadrature scheme that converges to the analytic result in the 
limit of increasing radius of curvature [3]. Large argument 

expansions of the Hankel functions for far-field calculations 
are evaluated using a highly convergent series representation 
[4].  Scattered intensities or RCS (radar cross section) 
generated for circular dielectric cylinders with both TE and 
TM polarizations are compared against analytic predictions.  
Poynting vector calculations within the cylinder are used to 
indicate regions of localized power dissipation.  This model is 
used as a tool for parametric studies of the sensitivity of 
scattered intensities to geometric perturbations about the 
circular cross-sectional shape. 

 
PROBLEM FORMULATION 

 
The time-harmonic wave equation, with suppressed ej�t 

time dependence, for homogeneous source-free media is the 
complex Helmholtz equation given by: 
 

(�2 + k2) �(r) = 0     (1) 
 
where k is the wave number.  The integral solution is 
synthesized from Green’s function satisfying: 
 

(�2 + k2) G(r,r’) = – �(r–r’)    (2) 
 
so that 
 
�(r) = ��s’ �G(r,s’) ��(s’)/�n’ – �(s’)�G(r,s’)/�n’	 ds’  (3) 

 
where � is the Cauchy Principal Value (CPV) integral; and 
equals 0, 1, or 2, depending on whether r is respectively, 
outside, inside, or on contour S’.  Kernel G(r,s’) is the zero-
order Hankel function of the second kind: 
 

G(r,r’) = – j/4 Ho
(2)(k
r–r’
)    (4a) 

 
with normal derivative given by: 
 

�G(r,r’)/�n’ = – jk/4 H1
(2)(k
r–r’
) cos(n’,r–r’)  (4b) 

 
Together with �(r), the wave function, boundary 

conditions are satisfied on S’ and in the far-field where the 
Sommerfeld radiation condition: 
 

lim r�� r���/�r + jk�	 = 0    (5) 
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ensures the finiteness of the solutions at infinity.   
TM Polarization 

Equations for TM polarization are obtained by setting 
�=Ez, where the incident wave is TEM to x, the direction of 
propagation.  The H and E field vector components are 
respectively, perpendicular to and aligned with the z-axis.  
Equation (3) is written separately for both exterior and 
interior regions, denoted by subscripts ‘1’ and ‘2’.  Enforcing 
continuity of tangential E and normal D(=E), where (=ro-
j�/�), and noting that the surface normals have opposite 
polarity, the resulting two equations for the common set of 
dependent variables on the surface S’ are: 
 
�s’ �G1(r,s’) �Ez (s’)/�n’ – Ez(s’)�G1(r,s’)/�n’	ds’ + Ez(s)/2 = 

Ez
i(s) 

(6) 
�s’ �G2(r,s’) �Ez (s’)/�n’ – Ez(s’)�G2(r,s’)/�n’	ds’ – Ez(s)/2 = 0 
 
These equations have to be solved simultaneously.  
 
TE Polarization 

The corresponding equations for TE polarization are 
derived by setting �=Hz, with all else following a similar 
procedure as before.  The E and H field vector components 
are respectively, perpendicular to and aligned with the z-axis. 
Enforcing continuity of tangential H and normal D(=E), and 
noting that the surface normals have opposite polarity, the 
resulting two equations for the common set of dependent 
variables on the surface S’ are: 
 
�s’ �G1(r,s’) �Hz (s’)/�n’ – Hz(s’)�G1(r,s’)/�n’	ds’ + Hz(s)/2 = 

Hz
i(s) 

(7) 
�s’ �G2(r,s’) �Hz (s’)/�n’ – (/o)Hz(s’)�G2(r,s’)/�n’	ds’ – 

Hz(s)/2 = 0 
 
Far Field Scattered Intensities (RCS) 

The corresponding far field normalized scattered 
intensities or radar cross section (RCS) are given by: 
 

�TM(�) = lim r�� 2�r �Ez
s�2/ �Ez

i�2 
(8) 

�TE(�) = lim r�� 2�r �Hz
s�2/ �Hz

i�2 
 

SAMPLE RESULTS 
 

To verify the algorithm, sample RCS calculations are 
performed for the circular dielectric cylinder subject to TM 
and TE polarized waves incidences. These results are for 400 
boundary elements (�/4) using the Galerkin method. They are 
compared to the analytic solution to determine the accuracy 
of the numerical technique.  For He-Ne lasers, a wavelength 
of 0.6328 um is used.  The cylinders are 9.75 um in radius, 
implying a very large ka value of 97. The back scattered RCS 
in the 155-180 degree range is used to compare the accuracy 
of the two solutions.  Results for the TM and TE polarized 

waves are shown in Figs. 1 and 2, respectively.  Agreement is 
clearly seen to be excellent.  More detailed results will be 
shared in the full paper. 
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Fig. 1. Analytic and numerical RCS for TM polarized wave 
incident on circular dielectric cylinder. 

 

Fig. 2. Analytic and numerical RCS for TE polarized wave 
incident on circular dielectric cylinder.   
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Abstract: This paper outlines a frequency parameterised finite element 
technique. The analysis method is used in an optimisation procedure 
dedicated to the design of microwave filters. The frequency 
parameterisation enables to compute an approximation of the field in a 
given frequency range. The scattering parameters of the filter are 
deduced from the field approximation. The analysis method is described 
in the first part and a numerical investigation compares the frequency 
parameterised technique with the standard approach. The second 
section presents the electromagnetic optimisation procedure and the 
design of a microwave filter. 

1. INTRODUCTION 

Electromagnetic methods have for many years been applied 
to the rigorous analysis of microwave circuits. Generally, 
these methods show a good accuracy, but present a great 
disadvantage in term of computation time; particularly when 
the considered circuit includes a lot of discontinuities. 
Consequently, the design of complex microwave circuits 
applying both a global electromagnetic analysis method and a 
classical optimisation method is unrealisable. The trends in 
microwave computer aided design are now to develop 
specific optimisation procedures, in order to reduce the 
number of analyses, and powerful analysis techniques [1]-[2], 
to reduce the overall computation time. 
In this paper, a frequency parameterised finite element 
method is presented. Applying this technique, an 
approximation of the electromagnetic field is computed in the 
frequency range of interest. The scattering parameters are 
finally determined from the approximated field. The analysis 
technique is described in the first section. The frequency 
parameterised technique and the standard approach are 
compared in term of computation time. In the second section, 
an electromagnetic optimisation procedure that uses the 
frequency parameterised technique is presented. The 
optimisation procedure is applied to the design of a 
microwave filter. 

2. FINITE ELEMENT MODELLING 

The finite element method is based on the fact that the 
structure geometry may be divided into sub-elements. In the 
case of electromagnetism, Maxwell’s equations are solved 
element by element in order to determine the electric field or 
the magnetic field, taking into account the boundary 
conditions. The linear system to solve is the following one: 

 A(f).X(f) = B(f) (1) 

where  f is the frequency, 
 A is the structure discretisation, 
 B is the set of sources, 
 X is the electric or magnetic field. 
 

The system is solved either in free oscillations or in forced 
ones. In the case of free oscillations, the second member of 
(1) equals zero by imposing a short-circuit at the input and 
output ports (no signal source). Solving the system 
eigenvalues enables to know the distributions of the 
electromagnetic field and the resonant frequencies. In the 
second case, the second member is different from zero and 
propagating and evanescent modes are computed thanks to a 
modal decomposition. The elementary solutions Xi(f) of this 
linear system enables to compute the electromagnetic field 
inside the structure and the scattering parameters. 

Frequency parameterisation – In the standard approach, 
since matrices A and B depend on the frequency, they are 
computed at each desired frequency. Applying a frequency 
parameterisation, an explicit formulation of X(f) is built in the 
range [fmin, fmax]. The frequency formulation is based on the 
computation of a polynomial function from the high order 
derivatives of the linear system (1) : matrices A, B and X are 
computed at the centre frequency f0, then, the n-order 
derivatives of X(f) are deduced from the n-order derivatives 
of (1). These derivatives enable to compute the Padé 
approximation of X(f) around the centre frequency f0 : 
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Then, the poles of (2) provides the resonant frequencies fi. 
The polynomial is evaluated at these frequencies to determine 
the modes �j. Then, for any frequency in the range [fmin, fmax], 
the sources are computed, and the electromagnetic field is 
calculated from the modal basis (fj, �j). The approximated 
field is finally used to compute the scattering parameters. 

Numerical results – The frequency parameterised method and 
the standard one are compared by analysing the 5-pole dual 
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mode filter presented in figure 1. The scattering parameters 
computed applying the parameterised method are compared, 
in figure 2, with the parameters computed applying the 
standard approach. The spectral analyses are in good 
agreement. The total CPU time, applying the frequency 
parameterisation, is 8 min in order to obtain the spectral 
response with 251 frequency samples on a HP9000/785 
workstation. Applying the standard approach, the total CPU 
time is 2.5 min at each frequency, that is equivalent to 10.5 
hours for 251 frequency samples. 

tuning screws

coupling screws

coupling irises

 
Fig.1. Dual mode microwave filter 

START 12.250 000 000 GHz          STOP 12.450 000 000 GHz

S11 [dB]   10 dB/div
S21 [dB]   10 dB/div

S11 [dB] S21 [dB]
Standard approachFrequency parameterisation

S11 [dB] S21 [dB]

 
Fig.2. Scattering parameters applying the frequency parameterised 

method (lines) and the standard method (dots) 

3. ELECTROMAGNETIC OPTIMISATION  

The frequency parameterised finite element method is used in 
an optimisation procedure [3] dedicated to the design of 
microwave filters. The purpose is to determine precisely the 
optimal dimensions of the electromagnetic model. The 
proposed procedure consists in extracting the lumped 
elements of the equivalent circuit from the electromagnetic 
model, then to converge the ideal values by adjusting the 
geometrical dimensions. The synthesis of the equivalent 
circuit provides ideal values for the lumped elements. 

Optimisation loop – The global electromagnetic model of the 
filter is analysed applying the frequency parameterised 
method. The scattering parameters are then approximated as 
rational polynomials. The lumped elements of the equivalent 
circuit are extracted from these polynomials, and comparing 
the ideal and extracted values, the geometrical dimensions of 

the filter are corrected. The optimisation loop is repeated as 
long as the extracted elements do not match the ideal ones. 

Application – A 5-pole dual mode filter is designed applying 
the optimisation procedure. The centre frequency is at 12.35 
GHz and the pass band is 37.5 MHz-wide. The 
electromagnetic model is tuned applying the optimisation 
procedure. The scattering parameters of the optimised model 
are presented in figure 3. An experimental model has been 
built. The spectral response is presented in figure 4. 

S11 [dB] S21 [dB]
Electromagnetic analysis

START 12.250 000 000 GHz          STOP 12.450 000 000 GHz

S11 [dB]   10 dB/div
S21 [dB]   10 dB/div

 
Fig.3. Scattering parameters of the optimised finite element model 

S11 [dB] S21 [dB]
Experimentation

START 12.250 000 000 GHz          STOP 12.450 000 000 GHz

S11 [dB]   10 dB/div
S21 [dB]   10 dB/div

 
Fig.4. Scattering parameters of the experimental model 

4. CONCLUSION 

This paper presents a frequency parameterised finite element 
modelling. The analysis technique provides improved results 
in term of computation time. The technique is applied in this 
paper to the design of dual mode band pass filters. 
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Abstract �This paper proposes an efficient 3-dimensional model to 
predict wave propagation within urban environments for frequencies 
between 900MHz and 2GHz, using ray-tracing techniques together with 
the Uniform Theory of Diffraction (UTD). This model takes into account 
multiple reflected rays by walls and ground and diffracted by corners 
and edges of buildings and their combinations.  

INTRODUCTION

The continuing evolution of land mobile radio 
communication systems lead to high capacity networks with 
small cell sizes (micro- and pico-cells) especially in densely 
built up areas. The planning of these modern mobile systems 
requires highly sophisticated planning tools. 

The models used for network planning can be 
distinguished in two categories: the empirical ones (Fig.1) 
and the deterministic ones (Fig.2). 

The first ones assume straight propagation between 
transmitter and receiver neglecting any obstacle (walls or 
buildings). They offer short computation time but suffer from 
limited accuracy.  

Deterministic propagation models are generally based on 
ray optical techniques.  

They could be used when the wavelenghts are smaller 
than the surrounding obstacles. In these cases electromagnetic 
waves can be approximated by rays, applying the laws of 
optics. Their idea is to describe the wave propagation with 
rays launched from the transmitting antenna. These rays are 
reflected and diffracted at walls and similar obstacles. Unlike 
the empirical models, deterministic models consider the 
actual physical rays and their interaction with obstacles 
(reflection and diffraction). If the number of interactions is 
high, the accuracy of ray optical propagation models is very 
good. 

The main disadvantage of ray optical models is the high 
computational effort and therefore the very long computation 
times for the predictions. 

Fig. 1. Empirical Models.                           Fig. 2. Deterministic Models. 

This problem is essentially due to the diffraction effects 
produced by edges, wedges and rooftops of buildings. In case 
of reflection, infact, one ray generates one ray, following 
Snell’s law; when a ray hits a corner, it generates a bundle of 
rays (Keller’s cone), as visible in Fig.3. 

Fig. 3. Diffracted Rays. 

To avoid this problem it’s possible to consider only the 
significant rays, sampling in a proper way the cone. In this 
way, the number of diffracted rays decreases and the error on 
electromagnetic field value is acceptable [3].  

To evaluate the contribution of each ray Fresnel’s 
equations are used for the reflected ones while UTD’s 
equations  are used for the diffracted ones [1]. 

RAY TRACING TECHNIQUES

There are two basic approaches to searching propagation 
paths. The 'ray tracing' algorithm looks for valid ray paths 
between transmitter and a fixed receiving station. Therefore, 
ray tracing is a point-to-point algorithm. For coverage 
calculation, the receiver has to be moved all around the 
prediction area. Computation time goes directly with the 
number of receiving points. Besides, there is an exponential 
dependency on the number of buildings and the number of 
subsequent interaction points considered in the calculation. 

An alternative technique is the 'ray launching' algorithm. 
Rays are launched from a fixed transmitting station in various 
directions, discretized into small angular increments. Field 
strength is summed up at all potential receiver points and the 
ray search is stopped, when energy falls below a minimum or 
a given maximum number of interactions is reached. Ray 
launching is basically an area oriented algorithm and therefor 
very well suited for coverage prediction. Computation time is 
almost independent on the number of receivers. It has a linear 
dependency on the number of subsequent interaction points 
and an inversely proportional behaviour with the dimensions 
of the angular increments.  
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3D RAY TRACING MODEL

The ray tracing technique used in this model is the ray 
launching one. The target of the model is the EMF coverage 
in an urban area. For this purpose, various types of rays are 
taken into account: direct, reflected by ground, reflected by 
walls, diffracted by corners, diffracted by wedges, reflected-
diffracted, diffracted-reflected, multiple reflected and 
multiple diffracted.  

Unlike other models, this is a full 3D model where 
buildings have a finite height; in this case, it’s impossible to 
ignore the contributions of rays diffracted by rooftops.  

A simple example of urban scenario is taken into account 
to predict the coverage when a GSM antenna is placed on a 
building rooftop. An upper view of this scenario is shown in 
Fig.4. 

Fig. 4. Urban Scenario. 

One of the critical aspects using ray-tracing techniques is 
the database accuracy. If the urban environment isn’t well 
described, some intersections could be missed with the 
consequent loose of accuracy on the prediction. 
In the model presented in this paper, in order to find 
accurately all the possible intersection between rays and 
buildings, the urban scenario is meshed and divided in 
triangles as big as desired. Fig.5 shows the 3D scenario in 
which each edge is divided into 5 parts. In this case we don’t 
need to make a dense meshing because the buildings are 
described as big blocks.  

Fig. 5. Meshed scenario. 

The meshing process allows us to take into account more 
complex urban environments, i.e. with domes or curvilinear 
surfaces.  

The complexity of the algorithm is almost linear, due to 
the very limited impact of the advancing front section of the 
algorithm (Fig.6). 
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Fig.6. Algorithm complexity. 

Then the radiation diagrams of the antenna are considered 
(an example in Fig.7). They are discretized along the vertical 
and the horizontal plane into small angular increments. 

Fig 7. Horizontal (Left) and vertical (Right) radiation planes. 

Each ray path is followed until it reaches the fixed maximum 
number of interactions. Then, using UTD equations, the 
electric field is calculated along each path. 

Fig 8. Electric field values  

CONCLUSION

A new model for field strength prevision in urban 
environments is here presented. The proposed method has a 
CPU time and accuracy appropriate for this purpose. It also 
allows considering real and complex environments, without 
any approximation on shapes of buildings. 
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Abstract— The paper presents a numeric processor for the analysis 

and simulation of radiated electromagnetic fields due to conductors of 
electric cabling systems of arbitrary shape and length carrying 
sinusoidal currents. It allows the computation of the steady state 
electromagnetic field components for any point in free space 
irrespective of the distance to the source, by emulating the classical 
standing wave pattern, with the propagation delay taken into account. 
The program also allows the calculation of the wave impedance and the 
visualization of the amplitudes of each component  in the form of 
contour plots in the plane of analysis, as well as the  variation of these 
amplitudes along lines. 

INTRODUCTION 

The electric cabling systems can be considered as 
unintentional antennas and are important sources of radiated 
interference as these can cause degradation in the 
performance of nearby electromagnetic devices. These 
interferences are commonly known as EMI radiated 
emissions. It is then important to predict the electric and 
magnetic fields radiated from these sources. The objective of 
the paper is the presentation of EMIR- A numeric processor 
for the analysis and simulation of radiated electromagnetic 
fields due to conductors of electric cabling systems. It allows 
the computation of the steady state field components of E  
and H  for any point ),,( ��rP  due to a cabling system of 
arbitrary shape and length carrying sinusoidal currents, by 
emulating the classical standing wave pattern. The total field 
components are obtained irrespective of the distance of 

),,( ��rP  to the source, so there are no simplifications for far 
field or near field zones and the propagation delay is taken 
into account. The program is very easy to use. As computer 
aided education is becoming increasingly popular, this 
program EMIR can also be used as a computer aided teaching 
tool that allows a quick and easy insight into the mechanism 
of radiation either for practical engineers or engineering 
students. 

FORMULATION 

The electromagnetic field structure radiating from an 
infinitesimal electrical short length conductor dl carrying a 
phasor current Î , can be represented by the following 
components 

�
Ê , rÊ , �Ĥ  at an observation point ),,( ��rP  

in a spherical coordinate system (see Fig.1): 
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Fig. 1.  Radiation field components  from an electric dipole. 

The observation point is assumed to be in free space. This 
infinitesimal current element is known as the electric 
(Hertzian) dipole [1]. 

The parameters in the field components represent: 

- r  is the distance from the source to the observation point P. 

-
0

0
0

�

�
� �  is the intrinsic impedance of free space in Ohm. 

- 000 ���� �  is the phase constant of the wave in rad/m. 
- f�� 2�  is the radian frequency, with f  in Hz. 

The term rje 0��  represents the propagation delay. 
In order to meet the conditions of electrically small, 

dl « r  and dl « �  ( �  is the wavelength at the frequency f ) 
and the current does not vary in amplitude and phase along 
the length dl . 

For analysis purposes, the conductors of the cabling 
system are divided into a series of n  connected segments 
with length nl  each carrying a current nÎ , each segment at a 
distance nr  to the observation point ),,( ��rP . 
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The conditions for considering each segment electrically 
small must be met, and the total field at ),,( ��rP  is found by 
summing the individual fields from each of the segments 
using the expressions described in eq.1-3. The total field 
components are thus obtained for far field or near field zones, 
without the need to do any simplifications. 

STRUCTURE OF THE  PROGRAM 

The program EMIR is written in C. The program takes as 
input data the consecutive end points of line segments that 
describe the geometry of the source conductors as well as the 
phasor complex amplitude of the currents carried out by each 
segment. For a point or grid of points defined by the user it 
computes the individual contributions due to each segment 
and the total field components by summing these 
contributions. 

The program also allows the calculation of the wave 
impedance wẐ  i.e the ratio of the amplitudes of 

�
Ê  to �Ĥ at 

a given point. The amplitudes of each component 
�

Ê , rÊ , 

�Ĥ  can be plotted in the form of contour plots in the plane of 
analysis, and it is also possible to plot a variation of these 
amplitudes along lines. 

APPLICATION EXAMPLE 

The application example chosen is the calculation of the 
radiated emissions at 100 MHz, of a two wire cable, with 
length of 2 m separated by 5 cm carrying the currents of 104  
mA (wire 1) and �96 mA (wire 2) respectively. The 
conductors are placed in the x=0 plane centered at the origin, 
aligned in the OZ direction.  In table I it is presented the field 
components in amplitude and phase at four points at distances 
of 0.1 m, 1 m, 10 m and 100 m for � =90º, � =90º, as well as 
the wave impedance wẐ . 

 
TABLE I 

FIELD COMPONENTS FOR r=0.1 m-100 m �=90º, �=90º  

r  
�Ê  rÊ  �Ĥ  wẐ  

rE

E

ˆ

ˆ
�

 

0.1 m 
8.5501    
∟-81º 

3.481e-13 
∟-90º 

0.096906 
∟1º 88.23 2.46e+13    

1 m 
1.2176    
∟-16º 

4.626e-16 
∟-133º 

4.024e-3  
∟-32º 302.54 2.63e+15    

10 m 
0.16788  
∟15º 

2.967e-17 
∟-101º 

4.474e-4  
∟15º 375.2 5.65e+15    

100 m 
0.01659  
∟14º 

2.565e-19 
∟103º 

4.404e-5  
∟14º 376.7 6.47e+16    

 
In Fig. 2 it is presented a contour plot of  the amplitudes 

of
�

Ê in the plane y=const=9 m and in Fig. 3 the variation of  

wẐ along 
�

r  in the y axis. 

 
Fig. 2.  Amplitudes of 

�
Ê in the plane y=9 m.  

 
 

 

 
 

Fig. 3.  Variation of  | wẐ |  along 
�

r
in the y axis. 

 
The wave impedance varies with r  and thus it is 

important to know the boundaries between the near fields and 
the far fields as this will affect the choice of adequate 
shielding materials. 

In the full version of the paper it will be presented a more 
complete set of results, including the contributions to the field 
components of the common mode and differential equivalent 
currents, regarding two application examples, not shown here 
due to length limitations of this summary. 
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Abstract - This work presents a multiobjective optimization of wire 
antennas using the real biased multiobjective genetic algorithm 
(RBMGA) with a novel feature: the real biased crossover operator. 
The procedure leads to better estimates of the Pareto-set during the 
multiobjective search. The novel algorithm is further applied to the 
optimization of a Yagi-Uda antenna, where the element’s length and 
separation between elements are varied. The multiobjective 
approach provides an antenna geometry with superior performance 
than those presented in the available literature. 

INTRODUCTION

he optimal design of wire antennas has attracted the 
attention of many researchers in the past decades, 

specially for wireless applications demanding a relatively 
large spectrum. Several optimization techniques have been 
applied to the design of wire antennas [1 - 4]. For instance, 
in [1,2] deterministic methods were used to solely reach 
the maximum gain, while [3] also deals with the input 
impedance, in order to maximize the matching with a 
given transmission line. 

Due to the amount of variables to be optimized 
(specially for a large number of dipole elements) and 
restrictions imposed upon the antenna electrical 
characteristics, a better strategy for designing wire 
antennas should account for several objectives, in 
particular due to the sensitivity of the electrical 
characteristics with the frequency variation through the 
operating spectrum. This suggests the application of 
multiobjective techniques.  

This paper presents the application of a multiobjective 
optimization using RBMGA, leading to antenna designs 
that are superior to former ones found in the literature. 

MULTIOBJECTIVE PROBLEM

The multiobjective optimization problem can be 
defined as follows. Given a set of objective functions to be 
minimized, fi, i = 1,…,m, one should find the set P of 
solutions defined as follows: 

P = { x � F | not exists y � F such that  
          f(y) � f(x) and f(y) � f(x) }, (1)

in which F denotes the feasible set. The set P contains the 
efficient solutions of the problem, and is called the Pareto-
optimal set.

MULTIOBJECTIVE GA  

In the present work, a novel real-biased crossover 
operator will be used for the construction of the 
multiobjective genetic algorithm. The operator uses 
information about the difference among the two parents 
fitness values in the generation of new individuals [5]. 
Such measure can be interpreted as a long-term gradient
information. The Pareto-set is found with high resolution 
and low computational effort.  

The algorithm employed is described as follows. 
Initially, the population is divided in two sets and for each 
one of them the occurrence of crossover is verified. So, let 
J(x) denote the fitness function and lets consider the 
vectors x1 and x2 representing two individuals, such that 
J(x2) < J(x1). The real biased crossover is then defined as: 

21g x)1(xx ����� ,      (2)

with � chosen in the interval [-0.1;1.1], according to the 
probability distribution defined by 

2.04.1 21 ����� ,      (3)

where �1 and �2 are random variables with uniform 
probability distribution inside the domain [0;1]. Such 
conditions are so to provide a quadratic probability 
distribution for �. The application of a new genetic 
crossover operator (the real-biased crossover), adds the 
feature of producing new individuals that are probably
closer to the best parent than to the worst one. The 
remaining operators are as usual [6]. 

In case of one individual being out of the admissible 
range as will be explored later, the reflection method is 
applied to force the individual inside the feasible region 
[5]. Afterwards, the mutation operator is applied. In case 
of occurrance, this operation is defined by � + x, where x 
represents the individual inside the admissible range and 
the vector � is defined as:  

�i = 0.05 �i (xr)i ,      (4)

where �i is a random number with Gaussian distribution, 
zero mean, and variance equal to one and i denotes that its 
vector is diferent at each mutation. The xr vector is a range 
vector between lower and upper limits for the variables.  

T

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



MULTIOBJECTIVE  ANTENNA OPTIMIZATION

In this section, will be done an optimization of a 
6-element Yagi-Uda antenna, as illustrated in Fig. 1. The 
element centered at the origin is the reflector, followed by 
the centered-fed driven element and the 4 directors. The 
distances between consecutive elements and the lengths of 
each element are the parameters to be optimized. The 
cross-section radius is the same for all elements.  

The electrical characteristics of the antenna, 
necessary to the establishment of the objective functions, 
are attained by a numerical analysis based on the method 
of moments (MoM) [7].  

The desired objectives were the highest possible 
directivity and front-to-back ratio, while sustaining narrow 
half-power beam-widths on both E- and H-planes with an 
input resistance close to 50 � over a 5% bandwidth, for a 
6-element Yagi. 

NUMERICAL RESULTS

An important issue in a multiobjective optimization is 
to pick the best solution among several candidates (the 
Pareto-set). Next, the designer chooses the best group of 
antennas, based on their individual characteristics.  

In the Table I we will present three antennas selected 
from the Pareto-Optimal set, in order to  discuss the results 
obtained with RBMGA The optimized results are 
summarized in Table II, where they are compared against 
some found in the literature [3,4]. Figure 2 shows results 
for directivity and input resistance across the band, which 
are compared against those provided by the NEC2 code. 

TABLE I
LENGTHS AND INTER-SEGMENT DISTANCES OF THE ANTENNAS CHOSEN IN 

THE PARETO OPTIMAL SET . RESULTS IN � (AT 300 MHZ). 

 RBMGA  

Lengths Distances Lengths Distances Lengths Distances

0.5084 - 0.5089 - 0.5184 - 
0.4890 0,2450 0.4824 0.2208 0.4943 0.2445 
0.4382 0,1486 0.4331 0.1428 0.4383 0.1480 
0.4047 0,2830 0.4018 0.2542 0.4070 0.2794 
0.4325 0,3844 0.4149 0.3705 0.4254 0.3627 
0.4198 0,2438 0.3903 0.2699 0.4123 0.2657 

TABLE II
(1) NORMALIZED FREQUENCY, (2) DIRECTIVITY (dB), (3) FRONT-TO-

BACK RATIO (dB), HALF POWER BEAM WIDTH (DEGREES) IN THE (4) E- 
AND (5) H-PLANES, (6) INPUT RESISTANCE (�). 

 RBMGA Ref. [3] Ref. [4] 
(1) 0.975 1 1.025 0.975 1  1.025 0.975 1  1.025 
(2) 11.00 11.65 11.50 11.79 12.66 11.60 9.475 9.702 10.02
(3) 21.42 17.55 12.37 16.86 10.52 10.33 14.31 15.47 15.55
(4) 48.40 44.60 39.54 44.72 40.53 35.96 56.75 55.23 53.23
(5) 55.28 49.86 43.09 50.15 44.47 40.05 69.15 66.33 62.92
(6) 52.02 49.64 49.94 21.02 49.49 1.849 54.44 62.05 68.33

Fig. 2 – Directivity and input resistance along the band. 

CONCLUSIONS

The RBMGA has presented a good performance in the 
design of  wire antennas. The usage of a multiobjective 
approach in this problem was a key issue in getting high 
performance antennas, that feature good parameters in a 
broad frequency range.  

The Pareto Optimal set was well mapped, showing that 
this novel feature applied to Genetic Algorithms, i.e., 
Biased Crossover, can be an efficient tool to reach better 
results when its applied at one specific goal. 
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Fig. 1 – 6-element Yagi-Uda antenna configuration 
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Conceptual Framework for Numerical Wave
Propagation Schemes

Timo Tarhasaari, Lauri Kettunen

Abstract— In this paper a conceptual background for wave
propagation schemes is presented. The framework enables
one to classify well known numerical techniques according
to the approximations they involve. Such a understanding
is needed in further development of these approaches.

I. Introduction

THE finite element method and Yee-like schemes [1]
have similarities [2], [3], [4] but as well they may be

viewed as separate approaches, see for instance [5], [6], [7].
The similarities and differences between the two families of
numerical approaches are not easily recognizable as the lan-
guage employed in the finite element and in the finite dif-
ference literature is not alike. However, the true nature of
a numerical approch is not the same thing as how the main
ideas are typically explained, and thus, to state precisely
the possible relationship between finite elements and Yee-
like schemes a conceptual framework powerful enough to
explain the essential features of both techniques is needed.

In this paper we aim to introduce such a framework es-
pecially for the needs of computational electromagnetism
and electromagnetic wave propagation problem.

II. Cochains and chains

Evidently the basic observations we make of the electro-
magnetic phenomena has to do with real numbers related
to (oriented) lines, surfaces and volumes, and this is also
the starting point of the so called finite integration tech-
nique (FIT) [5] and finite formulation approach [6], [7].

The geometrical objects involved in the observations can
be recognized as chains, and the real numbers –such as
currents, voltages, emf’s, mmf’s etc.– are images yielded
by cochains when they act on these chains. In unformal
words, if integration of field f over chain c is denoted by∫
c
f , then

∫
f (notice, without the c) as a compoud object

can be interpretated as cochain F . In general, cochain
F may well exist without field f , and our starting point
is precisely to express the information behind Maxwell’s
equations in terms of cochains without employing fields at
all at the first place.

Let E,D, J,B,H be the cochains whose counterparts are
the familiar e, d, j, b and h fields, respectively. The real
number E yields when it acts on 1-chain c is denoted by
(E|c). In more simple words, (E|c) is the emf along c, and
therefore, in terms of cochains Faraday’s law is given by:
(E|∂s) = −∂t(B|s) holds for all 2-chains s.

This work is supported by the Academy of Finland, project 53972.
T. Tarhasaari and L. Kettunen are with the Tampere University of
Technology, Inst. of Electromagnetics, P.O.Box 692, FIN-33101 Tam-
pere, Finland. E-mail: {timo.tarhasaari,lauri.kettunen}@tut.fi

Writing Maxwell’s equations in this style involves already
some assumptions as otherwise the model would not make
sense. At first, the boundary operator ∂ is defined as a linear
map between certain chain spaces, and chains themselves
are made of formal sums of cells and to define cells, r-planes
are needed calling for an affine structure [8]. The chain
spaces also make it meaningful to state that Faraday’s law
holds “for all” chains.

Cochains themselves must also have some properties. Let
|c| denote the measure of cell c. We’ll assume, that:
Property I: Given a cochain F there is a real number α
such that |(F |c)| ≤ α |c|, holds for all cells c of proper
degree.
Property II: Given a cochain G there is a real number
β such that |(G|∂c)| ≤ β |c|, holds for all cells c of proper
degree.

From the electromagnetic point of view these assump-
tions are well motivated: For instance, property I implies
that voltage (E|l) and magnetic flux (B|s) is bounded by
the (affine, i.e. relative) length of path l and area of surface
s, respectively. Correspondingly, in case of Faraday’s law,
property II implies that the emf (E|∂s) over the boundary
of surface s is bounded by the area of s. A cochain fulfilling
properties I and II is called a flat cochain [8].

The power of the cochain approach lies in the geometri-
cal interpretation. The real numbers cochains yield depend
only on the geometrical objects called chains, and the no-
tion of chains is easy to grasp and visualize.1 This results
in a clear intuitive interpretation of the linear operators
involved in cochain approaches such as, for instance, the
“Maxwell’s grid equations” in FIT [5].

III. Fields and exterior derivative

Cochains yield numbers on chains, and very small ones
are also allowed. But, the very limit of a chain decreas-
ing to zero changes things. This is what a field is about:
A field is obtained as the limit of a sequence of a (flat)
cochain acting on cells whose measure converges towards
zero. More precisely, the fields are (flat) differential forms
which map r-vectors to real numbers. For example, if F is
a cochain represeting the electrostatic force on point charge
q, then (F |l) is the work needed to move q along path l.
Correspondingly, if f represents the same force but now
as a field, then the real number (f |{l}) of f acting on 1-
vector {l} is known as the virtual work. (Vector {l} is just
an ordinary vector which is typically denoted by l.)

1Still, simple interpretation does not imply that the conceptual
framework of cochain formulations were more trivial than that of
other approaches.
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In the same spirit, the exterior derivative dg of a field g is
defined as the limit of cochain G acting on ∂c/|c|, when |c|
approaches 0. Be aware, cochains are not “discrete differ-
ential forms”. The cochain spaces are of infinite dimension,
and the cochains do even fulfill two continuity conditions:
The first one is, in fact, property I, which enables one to
define the notion of a field, and the second one, property
II, makes it possible to introduce the exterior derivative of
a field.

IV. Wave problem and Numerical schemes

The electromagnetic wave propagation problem is a solu-
tion of the Faraday and the Ampère laws which can either
be expressed in terms of cochains or fields. In addition, the
constituive laws are needed, but they can only be given as
a relation between fields.2

The very idea of the numerical schemes designed to solve
the electromagnetic wave problem is to construct a finite
dimensional counterpart of the “continuous” problem. The
finite nature of the numerical approach can be developed
in many ways. In the well known FDTD, FIT and FEM
schemes the finitiness follows from the need of a cell com-
plex (or complexes), and the conceptual differences between
the approaches follow from the approximations made along
the way in developing the schemes.

A. Finite integration technique

The main modeling decision behind the FIT approach
is to describe the electromagnetic phenomena in terms of
cochains. Cochains themselves call for chains and cells (re-
lying on the affine structure), and the finite nature of FIT
is obtained by restricting the domain of the cochains and
the boundary operator to cell complexes. (At this stage no
approximation is made yet.3)

The restriction implies one is no longer able to talk of
fields, as the notion of field needed the limiting sequence
of chains, and this is not available in the restricted space.
Thus, one may neither employ the constitutive laws, but
instead, an approximation has to to be introduced.

Assuming the measure |c| of cell c is available, the limit
process

(g|{c})
||{c}|| = lim

|c|→0

(G|c)
|c| . (1)

provides one with an apparent approximation of p-form
g in terms of cochain G: In the center point of cell c
(g|{c}) ≈ (G|c) holds. (The smaller |c|, the better is the
approximation.) Thereafter the definition of the Hodge op-
erator yields, for instance, (B|f)/|f | ≈ µ(H|ẽ)/|ẽ|, as an
approximation of the relation between magnetic flux b and
field h, at the center points where the primal faces f and

2In formal terms, the so called Hodge (star) operator cannot be
introduced to cochains. It is only defined as a pointwise map between
differential forms of proper degree.

3A restriction of the domain an operator does not introduce any
kind of approximation. All what is said, is that the operator may
not act on all elements of the domain. This is, for instance, why
“Maxwell’s grid equations” [5] are exact.

the dual side edges ẽ intersect. Furthermore, the definition
of the Hodge implies also that 1-vector {ẽ} needs to be
orthogonal to the vectors of the plane of {f}.
B. Finite difference time domain

The constitutive laws are relations between fields which
hold (almost) everywhere in the domain. The FDTD ap-
proach starts from the constitutive laws, which are assumed
to hold only at certain points of the domain. (Eventually,
these points will be the intersections of the dual pairs of
edges and faces.)

Next, the very idea is to approximate cochains in terms
of fields and thereafter exterior derivatives with cochains.
That is, one has (G|c) ≈ (g|{c}) which together with the
definition of d and (1) yields

(dg|{c′})
||{c′}|| ≈

(G|∂c′)
|c′| (2)

at the center point of cell c′.
The two grids of FDTD define the finite amount of in-

tersection points where the constitutive laws should hold,
and the tools presented above enable to approximate the
Faraday and Ampère laws in terms of fields at these points.

So, in FIT the approximation lies in the constitutive
laws, whereas in case of FDTD in the differential equations.
Notice, that both approaches employ the same first order
approximation of the one-to-one relation between cochains
and fields. This is why on the algorithm level the two tech-
niques become related.

C. Finite elements

In the finite element approach the constitutive laws are
included in the inner product (related to energy or power)
which has to do with the whole domain. For this reason
finite elements is another kind of approach not that similar
to FDTD and FIT in which the constitutive laws are related
to the local Hodge operator. The full paper will describe
this issue in details.
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Abstract In this paper we present a new formulation for the
evaluation of the electromagnetic field levels in the near zone of a cellular 
radio base-station (RBS) collinear array antenna. The algorithm allows
to determine the real current distribution along each half-wave dipole
forming the array for a given exciting function and it enables to take into
account the effects of mutual coupling among array elements. Once the
antenna current distribution has been determined, the radiated field in 
the near zone is reconstructed using the integro-differential equation
relating field and current. As preliminary result, the simulation of a 4-
element collinear array antenna operating at 900 MHz is presented. 

INTRODUCTION

This paper addresses the issue of electromagnetic field
calculations in proximity of cellular RBSs [1-2] and proposes 
a new formulation for the determination of the current
distribution in a collinear array antenna made up of N half-
wave dipoles. The approach is based on the assumption that
the presence of people near the installation does not affect
significantly the current on each element of the array. This 
hypothesis is satisfied if the region of interest for the field
observation is in the vicinity of the antenna, but at distances
greater or equal than /2 (i.e. the element size) [2]. With such 
position, the antenna can be modelled as an array of dipoles
radiating in free space (Fig. 1b). 

The main feature of the developed algorithm is that it
allows to take into account the effects of the mutual
interaction among array elements, which is usually neglected
by simplified approaches on the subject [2-3]. Furthermore, it
represents a viable alternative to the widely adopted antenna
code NEC [4] for the study of radiation from collinear array 
antennas, with the significant improvement of not exhibiting
the numerical inaccuracies affecting this latter approach
when, as the number of subdivisions increases, the length of
the segments in which each radiating element is divided 
becomes comparable to its radius. 

THEORY

Let us consider the situation depicted in Fig. 1a, where N 
radiating elements lie in free space. The notations xi, yi and zi
are used to identify the coordinates of the ith element centre, 
while ai represents the element radius. The z-coordinate is
parameterized on each element by a local abscissa :

z = zi+ h, (- . (1)
Each element is modelled as a perfect conductor. The 

governing equation is derived imposing that the tangential
component of the electric field vanishes on each element surface: 

Fig. 1. Geometry of the model problem (a) and an example of application: a 
collinear array antenna for cellular base-stations (b). 

N
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where Ii( ) is the current on the generic dipole, 0 is the free 
space impedance, khk̂ , being k the wave number, gil are 
suitable Green functions and Fl( ) = -j(16 kh/ 0)Einc,l,( ),
being Einc,l,z the z-component of the incident field on each 
element, due to an e.m. wave or to an applied potential.
Two new set of function are now introduced:
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Inserting (3) into the governing equation (2) and adopting
a vector notation, it results in:

4/F'd)'(I~)'(g~k̂
d
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l

2

2

2
2

2

, (4) 

where the integrations, extended in the interval (-2,-2), take
the form of convolution. Expanding I~  and g~  in
Fourier series and applying the convolution theorem, one has:
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2 , (5) 
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It can be shown that can be expanded in the following
Neumann series:

rI

. (6) 2/rJ2/rsI 1n
1

0n
nr

Now, the coefficient [sn] are the new unknowns of the
problem. Substituting (6) into (5) and expanding both sides of
this expression in Gegenbauer polynomials Cn

1, the following
system is obtained:

, (7) ]F[
]F[

]s[
]s[

BB
BB

2

1

2

1

1110

0100

where [Fn] is the nth coefficient of the expansion of [F( )] in 
Gegenbauer polynomials and 

r
r2

1q1n
22

2

q

qn
qn G

2/r
2/rJ2/rJ

4
rk̂

2
B , (8) 

being  n q, q suitable constants. Once the coefficients [sn]
have been evaluated, it can be proved that the currents on each 
radiating dipole can be obtained by the following expansion:

0n

1
nn

1
n

2
1

2 Cs)(1I~ (9)

It should be noticed that if a voltage is applied to an 
element l at the point 0, a corresponding term of the form

must be added at the
r.h.s. of equation (2). 

00l h/V)/k̂16(jF

NUMERICAL EXPERIMENTS

We considered as a first test case for the proposed 
formulation a typical omni-directional antenna: a Celwave
PD1610 4-element collinear half-wave dipole array [5]
operating at 900 MHz, with each element fed in phase by a
unit voltage source. The vertical component of the electric
field has been evaluated along x-axis (referring to the notation
of Fig. 1b) at the fixed quote corresponding to the antenna
centre. The good agreement between the proposed approach
(using 25 Gegenbauer polynomials for the current expansion)
and the NEC solution (with 25 subdivisions for each dipole) 
can be observed in Fig. 2. 

As a second test case, we calculated the current for a
single half-wave dipole working at 900 MHz and
characterized by a radius a = 0.005 m and a length 2h = 0.16
m. As far as NEC solution is concerned, it can be seen (Fig.
3) that it is not able to correctly reconstruct the behaviour of 
the imaginary part of the current distribution on the dipole.
This is due to the fact that the length of the single segment
becomes comparable to the dipole radius, when the
subdivisions are increased in order to get more accuracy. 

CONCLUSIONS

In this short paper a new algorithm for the computation of
the antenna current and the near field of collinear half-wave

arrays has been presented and tested on practical
configurations. First results show that the algorithm is
effective also in cases where other more popular approaches
fail.

Fig. 2. Vertical component of the electric field in the near zone.

Fig. 3. Current spectrum on the half-wave dipole: failure in NEC solution.
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Abstract— A general analysis of potential- or field-based finite
element solvers for axially uniform electromagnetic waveguides
is presented. We show that the partial discretization performed
by such methods results in certain constraints on the set of
permissible gauge transformations. We demonstrate that these
side effects may affect the reliability of present formulations and
propose a particular choice of gauge to overcome such limitations.

I. PRELIMINARIES

In the following, k0 denotes the wavenumber,η0 the
characteristic impedance, andc0 the speed of light in free
space. For simplicity, let the waveguide be lossless and the
electric permittivityεr and magnetic permeabilityµr be scalar
quantities. Then the Maxwell equations for time-harmonic
fields can be written as

∇× ~H = jk0/η0εr
~E, (1)

∇× ~E = −jk0η0µr
~H, (2)

∇ · ~B = 0, (3)

∇ · ~D = 0. (4)

Thanks to uniformity along the waveguide axisz, we may
factorize all modal fieldsv in the form

v(x, y, z) = w(x, y)e−γz, (5)

where γ denotes the propagation constant. Similarly, the
operator∇ is decomposed into

∇ = ∇t − γêz, (6)

where subscriptt stands for transversal components, andêz

for the unit vector in axial direction.

II. POTENTIAL FORMULATION

In view of (2) and (3), we define a magnetic vector potential
~A and an electric scalar potentialφ by

~B = ∇× ~A, (7)
~E = −c0∇φ− jk0c0

~A. (8)

From (1), we obtain the fundamental equations

∇× µ−1
r ∇× ~A− k0εr(k0

~A− j∇φ) = 0, (9)

∇ · εr(k0
~A− j∇φ) = 0. (10)

We have stated (10) because in the static case (9) does not
impose (4) anymore.

For waveguide analysis, we factorize the potentials as in (5)
and split ~At into a transverse gradient∇tψ plus a function~Ac

t

of non-vanishing circulation,

~A = e−γz
(

~At(x, y) + Az(x, y)êz

)
, (11)

φ = e−γzV (x, y), (12)
~At(x, y) = ~Ac

t(x, y) +∇tψ(x, y). (13)

By plugging (13) into (7) and (8), we obtain for the behavior
of ~B and ~E in the transverse plane

~B(x, y) =∇t × ~Ac
t − êz × [γ ~Ac

t +∇t(γψ + Az)], (14)
~E(x, y) =− jc0[k0

~Ac
t +∇t(k0ψ − jV )]

− jc0[k0(γψ + Az)− γ(k0ψ − jV )]êz. (15)

With the help of (1), we arrive at a set of equations that is
equivalent to the vector wave equation (9),

∇t × µ−1
r ∇t × ~Ac

t

+ γ2êz × µ−1
r êz × ~Ac

t − k2
0εr

~Ac
t

+ γêz × µ−1
r êz ×∇t (γψ + Az)

− k0εr∇t(k0ψ − jV ) = 0, (16)

− γêz · (∇t × µ−1
r êz × ~Ac

t)
− êz · (∇t × µ−1

r êz ×∇t(γψ + Az))

− k2
0εr(γψ + Az) + γk0εr(k0ψ − jV ) = 0. (17)

As before, we must state (4) explicitly to prevent ambiguities
for k0 → 0. Using (10), we obtain

∇t · εr

[
k0

~Ac
t +∇t(k0ψ − jV )

]

+ γεr[γ(k0ψ − jV )− k0(γψ + Az)] = 0. (18)

Eqs. (16)-(18) provide a common basis for a broad variety of
waveguide solvers. Specific implementations differ mainly in
the choice of gauge.

III. F INITE ELEMENT IMPLEMENTATION

In case of lowest order elements, we represent~Ac
t by the

co-tree variables of edge elements [1] and the scalar-valued
functionsAz, ψ, andV by the corresponding nodal basis. By
applying a Galerkin process to (16)-(18), we arrive at a second
order generalized algebraic eigenvalue problem of the form





A11 A12 0 A14

A21 A22 0 A24

0 0 A33 0
A41 A42 0 A44


 − γ




0 0 B13 0
0 0 B23 0

B31 B32 0 B34

0 0 B43 0
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−γ2




C11 C12 0 0
C21 C22 0 0
0 0 0 0
0 0 0 C44










x̄(Ac
t)

x̄(ψ)
x̄(Az)
x̄(jV )


 =




0
0
0
0


 , (19)

where x̄ stands for an unknown coefficient vector. We do
not give specific expressions for the submatrices in (19) but
mention that some of them are wavenumber-dependent.

IV. PERMISSIBLE GAUGE TRANSFORMATIONS

Since the formulation (16)-(18) contains three different
types of scalar functions, we ought to clarify what constraints
one may impose on the system without affecting the generality
of the field approximation. Eqs. (14) and (15) show that the
EM fields just depend on two independent linear combinations
of V , ψ, andAz rather than all three scalars. By substituting

α(x, y) = γ ψ(x, y) + Az(x, y), (20)

β(x, y) = k0ψ(x, y)− jV (x, y) (21)

for the relevant terms, we obtain

~B(x, y) = ∇t × ~Ac
t − êz × (γ ~Ac

t +∇tα), (22)
~E(x, y) = −jc0(k0

~Ac
t +∇tβ)− jc0(k0α− γβ)êz. (23)

The differential equations now take the form

∇t × µ−1
r ∇t × ~Ac

t − k2
0εr

~Ac
t − k0εr∇tβ

+γêz × µ−1
r êz × (γ ~Ac

t +∇tα) = 0, (24)

−êz · [∇t × µ−1
r êz × (γ ~Ac

t +∇tα)]

−k2
0εrα + γk0εrβ = 0, (25)

∇t · εr(k0
~Ac

t +∇tβ) + γεr(γβ − k0α) = 0. (26)

Eqs. (22) and (23) imply that, in order to avoid non-physical
restrictions on the electromagnetic fields, the gauge must not
impose any constraints on the scalar functionsα(x, y) and
β(x, y). We propose to either formulate in(α, β) directly or,
for more physical insight, use(Az, V ) and set

ψ(x, y) = 0. (27)

We mention one disadvantage of the proposed formulation.
By plugging ψ = 0 into the algebraic system (19), one can
see that the linear term inγ does not vanish.

In the following, we will show that constraints onAz or V
lead to less general formulations.

V. A NALYSIS OF AXIAL GAUGE

In [2], it was proposed to impose a gauge by setting

Az(x, y) = 0, (28)

which is equivalent to deleting the third row and column in the
algebraic system (19). The fact that (19) reduces to a linear
eigenvalue problem forγ2 makes this choice of gauge very
appealing.

However, note that (20) now reads

α = γψ. (29)

At γ = 0, the scalar functionα fails to serve as an independent
variable, and we have

α(x, y) = 0, (30)
~B(x, y) = ∇t × ~Ac

t ‖ êz, (31)
~E(x, y) = −jc0(k0

~Ac
t +∇tβ) ⊥êz. (32)

For (31) and (32) imply~B ‖ êz and ~E⊥êz, the formulation
will have trouble with transverse magnetic (TM) modes close
to cut-off. In addition, the method supports wavenumber-
independent null field solutions [2] of the form

γ = 0; ψ arbitrary, jV = k0ψ,Ac
t = 0; ~B = 0, ~E = 0. (33)

VI. V-G AUGE AND FIELD FORMULATION

Let us impose the gauge by constrainingV . We now have

V (x, y) = 0, (34)

β(x, y) = k0ψ(x, y). (35)

Since k0 → 0 enforcesβ → 0, the scalar functionβ(x, y)
fails to serve as an independent variable in the static limit. As
a result, the formulation may lead to numerical instabilities in
the low frequency case.

To elimininate the linear term in the eigenvalue problem
(19), one may perform a transformation of variables [3].
However, close to cut-off it may prove difficult to undo the
transformation. Moreover, the modified formulation supports
wave-number independent null field solutions [3] of the form

γ = 0; Ãz arbitrary, ψ = 0, Ac
t = 0; ~B = 0, ~E = 0. (36)

Eq. (8) shows that the field formulation is equivalent to the
present method but for a scaling factor of−jc0k0. Hence field-
based algorithms [3] [4] [5] are expected to exhibit similar
behavior as the V-gauge approach.

VII. C ONCLUSION AND OUTLOOK

Our analysis of potential- or field-based waveguide solvers
has shown that the use of a particular gauge can overcome the
shortcomings of existing finite element formulations. In the
full paper, we will detail the underlying theory and present
numerical examples to validate our findings.
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Microwave Drying of Cylindrical  Products 
Dr.M.A.Saber 

21 BLDG  1560 , Road  625,   Manama Town 306 
State of  Bahrain 

Abstract: Application of microwave power for drying of products 
in cylinderic form is presented . Numerical analysis of mass and 
heat transfer of the processed material using microwave energy and 
hot air , is carried out. The system is nonlinear one. Three 
dimensional finite difference using the polar coordinate 
system(curved boundaries) is the cornerstone of the solution of the 
system. To avoid physical and chemical or biological changes 
during manipulation, such technique possess implicit energy 
balance and control.

 . 
Keywords: Cylindric Products ,  Microwave applicator, Finite                     
difference ,  Hot air,  Microwave power , Hybrid drying , energy 
control. 

Introduction 

Recent attention has been given to the spatial distribution of 
temperature (due to microwave energy processing )within the 
product . The advantages and suitability of  microwaves and hot air 
are related to their unique volumetric drying and the effects that 
produces. Hybrid drying phenomena has been analyzed by the 
author [1] .  

This paper is devoted for drying out moisture contents of products 
of cylinderic shapes. Microwave power required for drying is 
related to the quantity of moisture contained in the processed 
material. The profile of the power is determined by repartition of 
the water contents in the porous medium and its evolution with 
time. The waves , then dissipate their energy  , preferentially, in the 
regions of higher humidity and so they have the tendency to behave 
as a factor of auto regulation of the humidity distribution. Change 
of mass m and temperature T , as a functions of the material 
thickness z , during hybrid drying is already analyzed [1]. 
Simulation is performed for a material of isothermal moisture 
content and mass transfer analogue of temperature. 

Mathematical Formulation 

(a) The Governing Equation 

The heat and mass transfer equations which describe the drying 
process can be respectively  expressed by the following 
equations[1-2] :  

dT/dt = (1/ 0 c`) [(d/du)Aq dT/du] + (e`L/c`)dm/dt + Pm.W  (1) 

dm/dt = d/du {am[dm/du +  dT/du]}     (2) 

Where  Aq  is the coefficient of thermal conductivity in the 
coordinate directions (r,  and z ) and it is measured as a nonlinear 
function of humidity[2], L is the latent heat of evaporation of free 
water , e` is the coefficient of phase change , c` is the specific heat 
of the processed material and 0 is its bulk density ,  am  is the mass 
diffusion coefficient (in r,  and z directions ), m=M/M0 , M and  
M0 are respectively masses of humidity and dried body,  is the 
coefficient of  thermo migration (in r,  and z directions ). For the 

underlying case  and am   are the same in all the coordinate 
directions. T is the absolute temperature, t is the time and Pm.W   is 
the microwave power. Equation (1) represents conservation of 
energy for the system, d/du is the derivative with respect to polar 
coordinates. 
(b) The Solution Technique and Finite Difference Formulation: 
Using CRANK-NICHOLSON  finite difference relation[3] , for 
polar coordinates , in equations (1) and (2) , and after some 
mathematical arrangements the results can be written in the 
following form : 

A
m n+1 

= B
m n

 T    T  (3) 

Where n+1 and n denote new and old iterated values, [A] and [B] 
are the coefficient matrices. 

Boundary Conditions 

The total surface boundary conditions[1] must satisfy the following 
requirements : 
1- Continuity of the heat flux . 
2- The total mass flux that reaches the surface must be equal to the 
vapor  flux. 
For the material cross-section, the used finite difference calculation 
grid must be suitable for the curved boundaries shown in fig.1 .  
And therefore, polar coordinate form of the finite difference 
technique is applied to get the solution of the problem. Fig.2  
shows the geometry of calculation of a point (i , j ) in the 
calculating grid shown in fig. 1 . 
As for the material center the difference  between the fiction line, 
surface and interior of the product can be expressed as follows: 

dT1
n/dz =  ( T2

n – T0
n) /2 HZ                         (4) 

dm1
n/dz =  ( m2

n – m0
n) /2 HZ         (5) 

Where HZ is the step length in z direction, 0 , 1  and 2 respectively 
denote fiction line , surface and interior of the product (as shown in  
fig. 3). 

Determination  of Dissipated  Microwave Power 

 The microwave power term, in equation1 illustrates the 
power dissipated into the processed material. It is important to 
precise such term in order to obtain good results. From equations 1 
and 2 , using boundary, central and initial conditions, the humidity 
m(r ,  )can be determined and hence from the known measured 
curves between m and the dielectric constant   , and the loss tang 
, the corresponding values of   and   
tang  can be determined. The length d of the cylindrical material 
is divided into n parallel dielectric discs as shown in fig.4 . Each 
has a number i ( i =1, 2 , 3 , …….. ..n ) , thickness equal to  d /n , 
permitivity   i , conductivity i , and constant humidity mi . Each 
disc is separated from the others by infinitesimal air cell. 
Repartition of sources of radiation is done in the two directions of  
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z  axis in such a way that the radiation is symmetric with respect to 
the middle plane of the material and this is means it is a bilateral 
one [1]. The dimensions of the product inside the applicator and 
the distribution of the electromagnetic sources maintain constant 
dissipated power during manipulation. The power dissipated in one 
dielectric disc is determined as the difference between the incident 
and reflected ones and the total bilateral dissipated power per unit 
surface area can be written[1] as follows : 

Pt = (1/2) ( [A1]2 – [ B1] 2 )  x 2                       (6) 

Where  A1 and B1  are respectively amplitude of the incident and 
reflected waves at the interface between the air and the dielectric . 

Simulation  Results 

Due to the temperature results caused by the microwave power   
Pm.W  the values of both m n and T n  can be known . Then by 
iteration and use of equation 3 , the new iterated values could be 
determined. Iteration process is repeated until the required object is 
reached . The profile of the dissipated microwave power is 
calculated and it is contained in the main program with the help of 
sub – program (Hyper). 
To get  rapid drying the cylinder is exposed to microwave power 
radiations from its two sides (i.e  +ve and –ve directions of its 
longitudinal axis z ), and this is called bilateral radiation . The 
obtained profile of the total used microwave power as a function of  
z has oscillating shape and this is due to standing wave phenomena 
which occurs with the bilateral radiation (more details exist in 
reference1). 
Simulation is done for drying of solid cylinder of sand with 
diameter equals to 30 cm,  length of 10 cm and other data given in  
table 1. The evolution of temperature (fig. 5) as a function of the 
radial distance R and angular coordinate  of the cylinder is  

Table 1 

Data Used in Simulation 

Initial Profile of Humidity, m                                                   15% 
Initial Profile of Temperature, T                 293 0K
Ambient Air Temperature, Ta    363 0K
Humidity of Drying Air,     0.1 msat

Frequency of Operation, F               2.45 GHz 
Step Length in  r  direction, HR                 0.25 cm 
Step Length in    direction, H                 3 deg 
Step of Time, HT                  30 sec 
Saturated Humidity, msat     0.4 
Heat Capacity of Dry Body, CP0                     5 J/gk 
Heat Capacity of Water,, CPE                 4.18 J/gk 
Bulk Density of the Material, 0               1 g/cm3

Latent Heat Generation Source, L          2200 W/m3

Biot Number, NB       0.5 
Transformed Biot Number, NBT                  1000 
Velocity of Light, C       3x1010 cm/sec 
Loss Tang  of Water                         0.1 
Loss Tang  of Dried Sand      0.013 
Relative Dielectric Constant Of Dried Sand, r1        2.4 
Relative Dielectric Constant Of Water, r         40 
Step Length in z Direction, HZ   0.5 cm 

illustrated for drying time equals 1.5 hours , ambient temperature 
Ta = 900C, with hot air and without microwave power.  
Simulation is carried out for hybrid drying (i.e. drying with hot air 
and microwave power ) of the same mentioned specimen. 
Evolution of temperature T(0C) is given as a function of cylindrical 
coordinates as shown in fig. 6. 
The obtained results displayed on the temperature surfaces of fig. 5 
and 6 assure that microwave energy is dissipated in the regions 
where the humidity is higher and so temperature  rise occurs. 

Conclusions 

Hybrid drying is more faster than conventional one, besides it gives 
products which meet the user requirements. Standing wave 
phenomena has been occurred due to bilateral radiation. 
Microwave energy permits more and rapid migration of humidity 
from the heart to the surface of the  cylinderic product and 
therefore more water are obtained on the surface of the material. 
Simulation of 3-D hybrid drying , for cylinderic products is more 
difficult than that for cubic ones studied in reference [1]. 
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Abstract  The alternating magnetic flux leakage testing is used for 
the detection of cracks on the surface of steel plate. In this paper, a new 
technique of how to detect plural cracks and their depth, which are 
located at very short distance each other, is proposed. The leakage flux 
density of the parallel (x-) component is used for the distinction of the 
plural cracks. Moreover, the depth of plural cracks is obtained by 
changing the exciting frequency and by detecting the perpendicular (z-) 
component of leakage flux. The behavior of leakage flux is examined 
using 3-D edge-based hexahedral FEM and compared with experiment. 

I. INTRODUCTION

The alternating magnetic flux leakage testing has been 
applied in the inspection process for detecting cracks on the 
surface of steel. We have already reported that the detection 
of the parallel component (Bx) of the leakage flux density is 
effective in inspecting plural cracks[1]. However, the 
detection technique of depth of plural cracks is not 
established yet. There may be some possibility to detect the 
depth of the crack by the amplitude of Bx or Bz. But, the 
depth of the cracks cannot be inspected when plural cracks 
are located at very short distance, because the amplitude is 
influenced by the adjacent cracks.  

In this paper, a technique of how to detect plural cracks and 
their depth, which are located at very short distance, is 
investigated by 3-D edge-based hexahedral FEM. In order to 
detect plural adjacent cracks, a differential type search coil 
for detecting Bx is proposed. The dimension of the search 
coil is optimized by the evolution strategy. Moreover, a new 
method for detecting the depth of plural cracks using the 
perpendicular component (Bz) of leakage flux, which is 
detected by changing the exciting frequency, is proposed. The 
experimental investigation is also carried out. 

II. MODEL AND METHOD OF ANALYSIS 

Fig.1 shows a model of testing apparatus. The ac field from 
the electromagnet magnetizes the steel. The search coils 
shown in Fig.1(b) is used. These coils consist of the 
differential type search coil of Bx, and single coil of Bz. The 
dimension of the differential type coil is optimized using the 

evolution strategy.  
The condition of analysis is shown in Table I. In order to 

get the steady state periodic result, the calculation is carried 
out during 2.5 period (=40 steps). The yoke is assumed to be 
linear (relative permeability: 60,000) and the eddy current in 
it is neglected. The condition of evolution strategy is shown 
in Table II. 

TABLE I
CONDITIONS OF ANALYSIS AND EXPERIMENT

Exciting coil         1A(rms),  30turns 2
Steel   SS400, smax=1500, =7.51 106 S/m 
Nodes and elements
Convergence
criterion

N-R   method    0.01T 
ICCG  method   1.0 10-3

     (a) bird’s eye view (1/2 area) 

 (b) Search coils for detecting plural cracks
Fig.1. Model for alternating flux leakage testing of plural cracks.
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TABLE II
CONDITIONS OF EVOLUTION STRATEGY

Design variable Sl- Sw-  (=Sw- )
Optimization 
condition

The differential value of  |Bx| should be maximum. 
Sl-  should be minimum. 

Restrictions
condition

1mm < Sl-  < 150mm 
1mm < Sw-  (=Sw- ) <15mm 

Initial value Sl- =1mm, Sw- (=Sw- ) =5mm 
Convergence 
criterion

standard deviation : 0.5  (Initial value : 75)

III. RESULTS OF ANALYSIS AND EXPERIMENT

Fig.2 shows the distribution of |Bx| when the depth of two 
cracks is different. The depth of a left-side crack and that of a 
right-side crack are 0.5mm and 1mm, respectively. The 
exciting frequency is 1kHz. The width (x-direction, Cw) and 
the length (y-direction, Cl) of both two cracks are 0.01mm 
and 100mm, respectively. The figure denotes that two cracks 
can be detected by the differential type search coil. The result 
obtained by the optimal design method is also shown in the 
figure. |Bx| detected by the optimal coil is increased about 8% 
compared with the initial coil.  

Fig.3 shows the distribution of Bx of one, two and four 
cracks detected using the optimal coil. The crack width (Cw), 
depth (Cd) and distance (L) of plural cracks are 0.5mm, 1mm 
and 0.5mm, respectively. The figure illustrates that even if Cd 
is constant, the amplitude of |Bx| changes with the number of 
cracks. Therefore, it is difficult to presume Cd from the 
amplitude of |Bx|. The figure also denotes the agreement 
between calculation and measurement.

Fig.4 shows the effect of the skin depth , which 
corresponds to the exciting frequency, on |Bz|. In this case, 
the exciting current is kept constant (=1A(rms)). The 
frequency is changed from 100Hz to 10kHz. The skin depth 
is calculated using smax=1500 of steel. =1.06mm and 
0.047mm correspond to 20Hz and 10kHz, respectively. The 
figure denotes that if  becomes smaller than Cd, |Bz| is 
increased rapidly. Fig.5 shows the distribution of flux density 
near the crack. The figure illustrates that if  (=0.047mm) 
becomes smaller than Cd (=0.1mm), the flux in steel is 
suppressed by the crack. Then, the leakage flux (|Bz|)  

Fig.2. |Bx| detected by initial and optimal coils (f=1kHz).

 Fig.3. Detection of |Bx| using differential search coils 
            (Cw=0.5mm, Cd=1mm, L= 0.5mm).

 Fig.4. Relation between |Bz|max and skin depth  (Cw=0.01mm,  
Cd=0.1mm, L=0.5mm, exciting current=1A (rms)). 

(i) above crack 

  (ii) in steel 
(a) 20Hz ( =1.06mm)       (b) 10kHz ( =0.047mm) 

Fig.5. Distribution of flux density near the crack (Cw=0.01mm, Cd=0.1mm). 

increases rapidly at the point of =Cd.
The possibility of distinguishing the number of plural 

cracks and their depth will be discussed in detail by 
examining the distribution of leakage flux and experiment in 
the full paper.   
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Abstract— For the numerical solution of complex eigenvalue prob-
lems, arising with gyrotropic materials in resonators, the Jacobi-Davidson
method is considered. In this paper the correction equation, which has to
be solved within the Jacobi-Davidson method, is simplified and several pre-
conditioning strategies, including also a multigrid scheme, are compared
for the approximate solution of this correction equation.

I. INTRODUCTION

Gyrotropic materials such as ferrites are used in modern cav-
ity design for tuning and vacuum isolation purposes [1]. For
most practical cavities the geometry is sufficiently complicated
such that analytical solutions for the eigenmodes inside these
cavities do not exist. The geometry of the test problem which is
used for the further analysis of our numerical eigenvalue solver
is sketched in Fig. 1. The simulation of electromagnetic fields in

Fig. 1. Cylindrical resonator including a dielectric ring covered with a gy-
rotropic material

gyrotropic materials is not straightforward, since their material
tensors typically are non-symmetric and complex-valued. Using
the Finite Integration Technique (FIT) [2] for the simulation of
electromagnetic waves in structures including gyrotropic mate-
rials leads to complex-valued, non-symmetric algebraic eigen-
value problems. For this task the Jacobi-Davidson subspace it-
eration method is adapted.

II. GYROTROPIC MATERIALS

Gyrotropic materials represent a subgroup of anisotropic ma-
terials with a second order material tensor. Those magnetic
and electric tensor material characteristics are central to a broad
class of complex materials such as plasmas and ferrites. The
gyrotropic material properties are due to an electric or magnetic
material tensor and thus such a material is either referred to as
gyroelectric or gyromagnetic, respectively.

S. Feigh is supported by the graduate student programme ‘Physik und Technik
von Teilchenbeschleunigern of the Deutsche Forschungsgemeinschaft (DFG)
under grant GK-GRK 410/1.

In accelerator technique ferrites represent the most impor-
tant gyrotropic material. Their magnetic material tensor for gy-
rotropic coupling is given by the Polder Tensor [3], which con-
sists of complex diagonal and non-diagonal elements. For the
further analysis it is of importance to note that

�

� is complex and
non-symmetric. The dielectric tensor of ferrite is diagonal.

III. NUMERICAL MODELING

Using the FIT for the numerical modeling the analytical

eigenvalue equation �� �
�

�
��

� � ���
�

� ��� � � results in the
discrete algebraic eigenvalue equation:

������������ ��������
�� � �� (1)

Where � and �� are symmetric matrices and represent the dis-
crete curl operators. The operators ���� ��� and �� are the
material-matrices and in case of gyrotropic materials they are
non-diagonal, non-symmetric, complex and frequency depen-
dent [4]. These matrices are obtained by introducing a grid on
which the primary field components are allocated. The material
distribution is discretized with respect to this grid and repre-
sented in the material matrices. Neglecting the frequency de-
pendence of ����� and ������� (1) by using an estimation
frequency yields a linear generalized eigenvalue problem. For
gyromagnetic materials�� is diagonal and can be inverted eas-
ily. In this case a standard eigenvalue problem

��� � ����� (2)

with the system-matrix � � ���

�
�������, has to be solved.

For most applications in accelerator technology only the small-
est dynamical eigenvalues are of interest. The solutions of (2)
also include the static solutions with � � �. Since these static
solutions will be a problem when trying to find the lowest dy-
namical eigenvalues, a gauging can be performed by adding a
grad-div augmentation [5] to (1).

IV. JACOBI-DAVIDSON METHOD

The Jacobi-Davidson (JD) subspace iteration method [6] is
applicable to non-symmetric and complex matrices �. In this
approach a search subspace is generated onto which the given
eigenvalue problem is projected. The projected eigenvalue prob-
lem is solved and this leads to an approximation for the origi-
nal much larger eigenvalue problem. In each iteration step the
search subspace is expanded by a correction vector � which is
computed by solving the correction equation

��� ������� ����� � ����� � ��� (3)
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where � is the estimated eigenvector, �� is the transposed vec-
tor of �, � is the approximated eigenvalue and � is the residual
vector of the eigenvalue problem, approximately.

� � ��� ����� (4)

The correction equation (3) has to be solved only approximately.
However, for large problems as they commonly arise with 3D
simulations the computation of (3) is the most time consuming
part in this algorithm. For the test problems it is found, that also
a solution of

�� � �� (5)

would result in a convergence of the JD method. For the test
problem the convergence history computing the 3 lowest eigen-
values is plotted in Fig. 2 using (3) and (5). The solution of the
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Fig. 2. Relative residual versus iteration step for the solution of the exact and
simplified correction equation (CE), computing the 3 lowest eigenvalues of the
test problem.

exact correction equation (3) indeed shows faster convergence
in terms of the required number of iterations. The more impor-
tant criterion, namely the time consumption, will be discussed
in the next section.

V. INTERIOR SOLVERS

For the solution of (3) and (5) in the JD algorithm the iter-
ative BICGSTAB method is used. It is found that a relative
residual of ���� resultes in the fastest convergence of the JD
algorithm. Solutions with a smaller residual do not result in suf-
ficiently smaller numbers of iterations, whereas more inaccurate
solutions will increase the number of iterations or may lead to a
stagnation of the exterior JD method.

The number of iterations and the computation time for the
JD method computing the lowest eigenvalue using (3) and (5)
(solved with BICGSTAB) are stated in Table I.a and Table I.b re-
spectively. Different preconditioners such as the incomplete LU
factorization, Jacobi and SSOR were applied to the BICGSTAB-
solver. As Table I shows, the best results can be obtained using
the incomplete LU factorization. However, for large systems the
ILU factorization itself is extremely time consuming and there-
fore not suitable for our problems. A different possibility to
solve (5) approximately is to replace� with an easily invertable
approximation of itself, such as the incomplete LU factorization
(Table I.d) and the Gauss-Seidel decomposition (Table I.e) of

Correction Equation ��=�� Iter. Time

a.) � � ��� ������ � ������ ����
- BICGSTAB(tol� ����) 16 65s
b.) � � �

- BICGSTAB(tol� ����) 21 31s
- BICGSTAB(tol� ����, ILU(0)) 10 20s
- BICGSTAB(tol� ����, JACOBI) 20 38s
- BICGSTAB(tol� ����, SSOR) 19 36s
c.) � � �

- exact 542 212s

d.) � � ���	�


- exact: � � �	���������� 114 48s

e.) � � ��� ��������	�
- exact 143 70s
f.) Multigrid-solver� � �(tol� ����� 21 25s

TABLE I

Computation time and number of inner iteration steps, calculating the lowest

eigenvalue of the test problem (��� gridpoints), for different correction

equations and solvers on a 1.8GHz PC using a MATLAB implementation. The

first argument of the BICGSTAB solver refers to the tolerance of the solution

(relative residuum) and the second argument refers to the applied

preconditioner. The matrix � represent the lower triangular part respectively �

the upper triangular part of the matrix�. � is the diagonal of�.

�. Once � is substituted in this way, an exact solution of the
obtained approximation can be derived. Even the approximation
�=� leads to convergence of the JD method (Table I.c), but the
convergence is rather slow.

A new promising method lies in the approximate solution of
the algebraic system �� � �� by using a multigrid scheme
[7]. A geometrical multigrid method solving �� � �� was
developed and implemented in MATLAB. Using this multigrid
solver in the JD method a competitive computation time was
achieved (see Table I.f) for this small problem size. Since the
asymptotic complexity of multigrid solvers are superior to that
of standard solvers it seems to be best suited for this task.
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Approximate Methods for the Calculation of the ECT Signal of a Crack
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Abstract  Approximate methods for the calculation of the
interaction of a pancake type exciting coil and a crack in a non-
ferromagnetic conducting plate covered by a thin layer of conducting
deposit are presented. The perturbations caused by the presence of the
crack and the deposit are represented by secondary sources that actual
values are obtained by the solution of a set of integral equations. Using
different approximations, the coupling between these integral equations
can be reduced, as a result, fast calculation methods are obtained for the
prediction of the signal of the investigated eddy current testing (ECT)
arrangement.

INTRODUCTION

The eddy current testing (ECT) signal of a crack is
significantly modified if various deposits are accumulated on
the surface of the tested specimen. In fact, in most cases the
signal due to the presence of a deposit is considerably larger
than the signal of the crack, so the real question in such
situations is the detection of the crack that signal is shaded by
the signal of the deposit. This statement is especially true for
the situations when the deposit and the crack are located on
the same side of the plate that is actually inspected from the
opposite side by a conventional pancake type induction probe
(OD type crack and deposit). Limited number of experimental
results are available on such configurations among the
JSAEM Benchmark Problems #5 [1]. One possible way to
detect cracks in plates coated by deposits might be the
application of some inversions technique that can be based on
optimization or neural networks. For the implementation of
such methods, the fast solution of the forward problem plays
an important role that is used either for the evaluation of the
function calls in the optimization loop or for the generation of
data base for teaching the neural network.

General purposes codes developed for electromagnetic
field calculation (such as finite element or boundary element
codes) cannot be easily applied without modification for ECT
because of the spatially concentrated nature of the defects
compared to the rest of the arrangements. If, however, the
mentioned techniques are applied, special effort should be
made to decompose the small field perturbation caused by the
defect from the large electromagnetic field due to the defect-
free configuration [2], [3]. Previously, for plate specimens,
we published calculation methods used for the fast evaluation
of the ECT signal of crack type defects [4] (for time harmonic
excitations) and thin, uniform thickness deposits [5], [6] (for
time harmonic and time dependent excitations, respectively).
The combination of these results leads to the development of
a method that can be used for the calculation of the ECT
signal of cracks in a plate coated by thin uniform thickness
deposit. In the following this calculation model is outlined.

NUMERICAL MODEL

Consider the configuration shown in Fig. 1, where an
arbitrary shape cylindrical ECT coil scans above a non-
ferromagnetic infinite plate that thickness and conductivity
are h and σ, respectively. The exciting field vary in time as
the real part of exp(jωt). The metal deposit is located on that
surface of the conductor that is on the opposite side where the
excitation is. The shape of the deposit in the x-y plane is
arbitrary, while it is assumed that its thickness, d, is uniform
and considerably smaller than the thickness of the plate. The
deposit is modeled as a linear material that conductivity and
permeability are σd and µd, respectively. The plane of the
assumed infinitesimally thin crack is perpendicular to the
plane of the plate and its conductivity is zero.

According to the crack and deposit models [4-7],
secondary sources are used for the representation of the
presence of these objects in the otherwise homogeneous plate.
Specifically, the infinitesimally thin crack is represented by
an x-directed current dipole layer distribution, p(y,z),
concentrated on the surface of the crack, Sc (see Fig. 1). The
thin deposit is represented by tangential surface electric,
K(x,y), and magnetic, M(x,y), current distributions on surface
Sd that is the surface occupied by the deposit on the surface of
the plate (see Fig. 1). Considering the linearity of the outlined
problem, the total electromagnetic field generated by the
interaction of the exciting coil and the described arrangement
can be written as the sum of three electromagnetic fields as,

cde

cde

EEEE

HHHH

++=

++=
(1)

where superscript, e, denotes the electromagnetic field
calculated from the interaction of the exciting coil and the
plate (here the presences of the deposit and the crack are
neglected). Superscripts, d and c, stand for the
electromagnetic fields that are generated by the secondary
sources representing the deposit (K(x,y), M(x,y)) and the
crack (p(y,z)), respectively. Assuming the infinite plate
geometry, the electromagnetic field due to the secondary
sources (Ed, Hd, Ec, Hc) can be expressed with the help
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Fig. 1. The investigated ECT arrangement.
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of dyadic Green's functions. The filed of the excitation (Ee,
He) can be obtained by any field calculation method, in most
cases it is given analytically.

The already unknown secondary sources can be obtained
from the boundary conditions applicable at the given object,
namely the impedance type boundary conditions at the
deposit and the requirement that there is no current flowing
across the surface of the crack. From these requirements we
obtain that the total electromagnetic field, E and H, must
satisfy the following conditions,

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ] d

tt
d

tt
d S

z
d

z
d

∈
+×=−

��
����

+×−=−
��

����
−+−+

−+−+

r
rHrHrErE

rErErHrH
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ˆ
2

coth

ˆ
2

coth

η
η

σ

η
σ
η

, (2)

( ) cSx ∈=⋅ rrE ,0ˆ , (3)

where ( ) 2/1 ddj σωµη += and x̂ , ŷ , ẑ are the unit

vectors of the co-ordinate directions. Subscript t denotes the
tangential components of the vectors, while superscripts +
and - stand for the field components on the upper side (z=-
h+0) and lower side (z=-h-0) of the surface Sd, respectively.

Writing the Green's function expression of the field of the
secondary sources into (2) and (3), a system of integral
equations is obtained that numerical solution provides the
actual distribution of the secondary sources. Knowing this,
the impedance variation, ∆Z, of the exciting coil can be
expressed based on the reciprocity theory as,

( ) ( ) ( ) ( )[ ] ( ) ( )
��

⋅−⋅−⋅−=∆
cd S

e

S

ee dpxdZI rrrErrMrHrKrE ˆ2 ,(4)

where I is the amplitude of the exciting current of the coil.

APPROXIMATION METHODS

Assume that the deposit and the crack are not interacting
with each other, that is,

( ) ( ) ( ) ( ) ( ) ( ) d
decdec S∈<<<< rrErErErHrHrH ,,,, ,(5)

( ) ( ) ( ) ( ) ( ) ( ) c
cedced S∈<<<< rrErErErHrHrH ,,,, .(6)

In this case (2) and (3) are decoupled, consequently their
solution provides the simple superposition of the
perturbations caused by the deposit on the homogeneous plate
and the crack in the otherwise homogeneous plate. This
approximation can be surely used if the crack and the deposit
are not on the same sides of the plate.

A better approximation can be obtained if we neglect only
the field perturbation due to the crack on the surface of the
deposit, that is we assume only (5). In this case (2) will not
depend on the solution of (3). If we first solve (2) and then
knowing Ed and Hd we solve (3), the computational effort
does not increase compared to the previous case, on the other
hand the accuracy of the result is significantly improved. We
believe that this approximation is acceptable for most of the
situations of practical interest.

NUMERICAL EXAMPLE

In Fig. 2 the impedance changes of the exciting coil
scanning along the x=0 line are plotted when the not
interacting crack and deposit approximation is assumed. The

frequency of the excitation is 150 kHz. The deposit is
centrally positioned and its size is 8mm×8mm. The crack is in
the x=0 plane and it is opened to that side of the plate where
the excitation is located, its length and depth are 4mm and
0.25mm (ID 20%). The other parameters of the arrangement
are (see Fig. 1), h=1.25 mm, σ=9.7 MS/m, d=80 µm,
σd=58.1 MS/m and µd=1.0. In Fig. 2 the signal without the
presence of the crack (deposit only) is also shown.
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Fig. 2. Impedance variation versus location of the middle of the ECT probe.

CONCLUSIONS

Efficient approximation methods for the calculation of the
ECT signal due to a crack in a plate covered by thin
conducting deposit have been presented. The accuracy and
the efficiency of the presented methods suggest their
applicability for the solution of the inverse problem of shape
reconstruction of cracks in plates covered by deposit. A
numerical example demonstrating one of the methods has
been also shown. In the extended version of the paper
numerical results obtained by both methods will be compared
and the error of the approximations in the case of practically
important situations will be investigated.
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Abstract--This paper presents an application of the 3-
dimensional vector finite element analysis for design and analysis 
of  multi-port microwave cavities with a sensitivity optimization 
algorithm. To verify the method, 2-port microwave cavities are 
analyzed and compared with the test results. Also, several types of 
cavities have been analyzed by the method to demonstrate the 
validity and accuracy of the program.

Index Terms— Microwave cavity, Vector finite element 
method,  Edge element.   

I. INTRODUCTION 

We present a vector finite element method with a sensitivity 
method to analyze and to design a multi-source microwave 
cavity. The 3D FEM using edge elements can overcome the 
various difficulties of microwave cavity analysis such as long 
computing time and large memory requirements.  

A vector wave equation for the electric field, E, is derived 
from Maxwell’s equation, 

0)( 2
0 ����� EkE rr ��         (1) 

where, k0 is the propagation constant( 000 ����k ), � is 
angular frequency,  �r�is a relative permeability and ��r is a 
dielectric constant, and all the walls of the cavity are assumed 
to be perfect conductors. The FEM formulation of the vector 
wave equation (1) is performed by using the Galerkin 
Weighted Residual method using 3-D tetrahedral edge 
elements[1] as follows: 
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where iN  is used as a weighting function. The boundary 
integration over the conducting wall becomes zero by choosing  
the appropriate  basis function. 

II. EXAMPLES OF  APPLICATIONS 

A. One-port Microwave Cavity Model 
For verifying the 3D FEM formulation of (2), a one-port cavity 
is analyzed as shown in Fig.1. The cavity size is 405 x 450x 55 
mm  with a port, whose width is 109 mm. TE10 mode (f=2.45 
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701, S. Korea(e-mail: psshin@hongik.ac.kr / yangjer@hongik.ac.kr). 

Sheppard J. Salon is with the Rensselaer Polytechnic Institute, Troy, New 
York 12180, USA (e-mail: salons@rpi.edu). 

GHz) is imposed on the boundary surface of the waveguide 
port, and its E-field distribution is calculated as shown in Fig.1.  
The E-field is well distributed as expected. 

Fig. 1  One-port microwave cavity model and its E-field distribution  

B. Sensitivity Algorithm to Optimize a Cavity  
A sensitivity method is employed to optimize a microwave 

cavity for making the incident power maximum.  If the 
coefficients of the reflection and transmission of the cavity 
were minimum, the incident power would be maximum. To 
minimize the reflection coefficient an objective function is set 
as follows: 

� �
22

0
2),(),( RHpRHpF ��        (3) 

where, p is a design variable vector, H is the state variable, and  

0R  is a reflection coefficient, which is zero with no reflection. 
When (3) is minimum, the reflection coefficient of the cavity 
will be minimum. The sensitivity of the variable is calculated 
as  dF/dp.
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Fig. 2.  Simulation  model of the 2-port MW cavity and E-field contour lines. 
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Fig. 2 shows the simulation model of the 2-port MW cavity 
model. There are 3 variables, x, y, and the cavity width. Fig. 3  
shows the power dissipation of the simulation model as 
functions of x and y. The maximum point occurs at x = 0 and y 
= 131 mm. Fig. 4 shows the reflection and transmission 
coefficient of the model. The minimum reflection and the 
maximum power dissipation occurs at the width = 355 mm. 
The final model is determined using the variables x=0, y=131 
and width= 355 mm.  
  The optimized 2-port microwave cavity was manufactured 
as a test model to verify the 3D FE program. The scattering 
parameters are also calculated by using the 2-port network 
method to compare with the measured values. The 2 values are 
compared as shown in TABLE I. The agreement is fairly good, 
within a tolerance of 5 %.  

TABLE I 
Comparison of S-parameters for the 2-port cavity 
S-parameters Calculated Measured 

S11 amplitude 0.9121 0.9051 
S21 amplitude 0.4981 0.5145 
S22 amplitude 0.8921 0.8762 
S12 amplitude 0.5020 0.5019 

Fig.3.  Power dissipation of the simulation model as functions of x and y.  
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Fig. 4.  Reflection and transmission coefficient of the simulation model 

C. Optimal distance between 2 Ports 
Fig. 5 shows a simulation model to optimize the distance (x 

variable) between 2-ports using the sensitivity algorithm for 
calculating the power dissipation. The dissipated power, Pdis,

of the cavity is calculated by the following equation. 

����
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dHnHnjjP T
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2
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��

   (4) 

Fig. 6 shows the power dissipation of the simulation model 
as a function of distance between 2 ports. The maximum 
power dissipation occurs at  x= 9.5 mm. 
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Fig. 5  A simulation model to optimize the distance between 2-ports 
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Fig.6.   Power dissipations as a function of distance between 2 ports 

III. CONCLUSION

This paper proposes an application of the 3-dimensional 
vector finite element analysis for design and analysis of  multi-
port microwave cavities with a sensitivity optimization 
algorithm. The 3D FEM formulation of the vector wave 
equation is performed by using the Galerkin’s Weighted 
Residual method using 3-D tetrahedral edge elements. For 
verifying the program, one and two-port microwave cavities 
are analyzed by the method as the case studies. The sensitivity 
algorithm is also applied to the model for optimization of the 
2-port MW cavity size and port distance. The optimized model 
was manufactured for testing, and the test results agreed well 
with the calculations.  

Consequently, the proposed program can be a very useful 
tool to design and analyze a multi-port microwave cavity.

REFERENCES

[1] J.W Shin, P. S Shin and C.Y Cheon, “Analysis of Circulator Using 
Hybrid Finite Element Method”, Journal of KIEE, vol. 46, no. 5. May 
1997, pp. 68-73. 

[2]  Hong-bae Lee, Computer Aided Optimal Design Methods for 
Waveguide Structures, Ph.D Dissertation, Seoul Nation University, 
Seoul, Korea 1955, pp. 9-24. 

165Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



��� ��� ��� 	��
��� �� � ���� ������ ������� ������ �� ����

�� ��������	
 �� �����
 �� ����
��������� 	��
����� ������������� �� ���������� �����������


��������
����� ��������� ����������� �������
�������� � �!""# $% ! �! �������# &����'

(��)����*+�����*����,���-��%�������-��

�� �����
$�.�������� �� �
������ ��/������
����������� ������� �� 0��� �������

���1� ������ "23# ��� 44 " %5  # ������/�.����# 0�# ������
���)��,���-����-��

���������� ���� ��	

�� �����
 ���	��� �� �	
�� 	� ���
���� ��	�� ��� �
���	��	�� �	�� ������	�� ����� �������
��� ��� ������ ������ ��� �����
  
����� 	� ��� �	�� ���
�	� �� ��� ���� 
������ 
� ��� 
�� �� ������	��� ��	��
��� !	�	�� "������ ������ �!"��� ��
������ �	��  
��	�����
 ���	���� ������ ������ 
������ �	�� �� ������

�� �������	�
��

6��� ������� �������� ��� �����������' ���
�# ��
��' ��%
������� ������� �������� �7��..�� (��� ��������� ����%
��
 �������- 8�� ��� ������� �� �1����� (��� 9� �%
��
' ��� �������
 �����%���� ���������
���� �����%
��� �� �� ������� �' ��� ��������� �����- ���
�����' �� ��.��'�� �� .������ ���������
���� �������%
���� :���� �������� �� ������'; � ��������� �7��.%
���- ��� ������� ���� �����' �� ��� �<���������
�� ��� ��������� ���� �������� ��� ��(��� ������ ���%
7���' =�>- 	 ��<���� ������ �� �1���� �� ���� ��� ?����
� ��� ������� �� ��( ���7������ ���
 (���� ��� ���
.��.���� � =@>- ���� .�������� �� �1������� �� ���'���
� ���� (��� ���
 ��� ��6 ������- 	� ����������
���� ��..��� ��6 ?����# ��� ������ �� ��' �1�����
��� ����� ����� ��� ���� ��� ��6 ���� � ��� ����%
���- ���� (���� ��� ��
� �� 
������� ���7������ ����(
��� ��(��� ������� ���7���' =!>- A ����� �� ��������
��� ��6 �����������# ������� (��� �� ���.���� �� �����
������ ���.������� �� 6����� �� 6���� �������-

��� ��
�� ����	����

��
- � ���(� ��� ������� ���� ������
���� (���� ��
�1����� �' �(� ���������� ����- ��� ���� ��� .������� ��
��� �%�1�� �� ��� ������� �� �� B  �4�# �� B ��4� ��
�� B !�@�# �� B @���- ��� (����# ���
�� �� ��
�� ��
��� �����' ��� 
��� �' � B "�3�# � B @�2� �� � B C�@�#
���.�������'- ��� ������� ���7���' �� ���������
�' =">D

���� B
�

@
�
	


���
�

��
E
��
�

��
E
�
�

��
� :�;

(������� ��  �������� ��� ���� � ��� �����'- �����
�� � ��1���� ���������� ���7���'# ��� ��� ��(��� ���%

�

�

�

�

���
���

�

�

�

�

�

�

� ��

�

�

�

�

�

�

���� �� ��	
�� ���� ��� �		���� ����

7���' �� ��������� �' ��� �������� �� ��� ����%
���- ��������� �������� ����� �� ��������� ��
����
�6��� ����� �� �� 
������� � ��� �������-

���� ��� ������

��� ���������� ��� 6������
 :��6; ������ �� �
��<������� �����7�� ��� ��� ���.������ �� ���������
%
���� ?����- ��� .������ ����� �� ��������)�� �� ���
?���� � � �������� ��� ���.���� ���
 � 0'���������
������� ���� :0��;- ���� .��� �� � 0�� �� ������%
���� (��� �(� �����
��# �� ��� ?���� ��� ���������� ����
����� �����
��- ��� �1������� �� ��� ������� �� ��.��%
����� �..�'�
 ��
���� ?���� �� ��+���� ���� �����
��� (���� �� ���( � ��
- @- ��� .��� ����� ��� ��%

�
�

�

�

�

��

�

��

��

��

��

���

���� �� ��

����	� ��������� ����� 	���� ���

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



������� ��	
 �� �
���
� � �� �� ��
 ����
��� �
�� �� ��

�����
�� ���
� ��� � �� ��
 ��		
�� �� ��
 ��	
� � �
�
����
� �
��	������ �� ��
 ��� �
���� ��� ������������
��� ������������� 	
���	
�
��� ��� �
 ����� �� �� �

��� ������ 	
����� �������

��
 ����
 
�
�
�� ��	�������� �� �
	�!
� ����� ��

�
����
� 	
������ �
����� "
������� ��
 ��!
 
�������
��	 � ���
���	����� 
�
��	�� �
�� �� ���� 
 ��� ���
 �
�
��
�
��# ���� � �
� �� �
������� ��������� ��� ��� ���
�	���
��� �!
	 ��
 ��!��# ������ $ �
��� ���
	 ����������� ��
%	

�&� �	�� ���
�	�� ��
�	
� ��'

���

�

(

��

�
�� ��

�
�
�
�� ���

�
� ��

�	�
�� � ���

) 
���� � �� � ��� $� 
����

��

�

��� �
�
����� ��

�
*

+ �
����

���

�

�� � ��� $ � � � � �(� �  �

,-.
��
	
 �� ��� �� �
���
 ��
 ��!
����
	 ��� ���
����

�� �	

 ����
 �� ��
 ��	��� !
���	 �� ��
 �������� ��	�
���
 * + �$ �� ��
 ��		
�� �
����# �� ��
 ��	
 ��� ��

����������!
 ��	��
�
	� � 	� ��� �� ��
 ��������!��# 	
��
���!
 �
	�����!��# ��� 	
����!
 �
	�
������# 	
��
���!
�#�
���	�/������� �� ��
 
�
��	�� �
�� �� +

��
��� ����� ���� �

�
� �� !
���	��� ����� ��������� �� ��������
� ���� ��
 
��
�
�� ��
 
�
�
��� �
��� �� � �#��
� �� ���
�	 
�������� �����
��� �
 ���!
� ��	 ��
 ��0���� ��
Æ��
�� �� �

�� ����
���� ����
��

1��� 2 ����� ��
 ��
��	�� �� ��
 �����
	� 3���
��	
� �
	
 
/���
� ��������
����# ���� � 	
��������	
����
 �� ( 4 ��������
 ��� � ��	����� �� 52�2�(6��� ��
��
 ���
�� 	
������
 �	
��
��# �� ��
 �����
	 �� ��

��	
 �
 ������� �� ��� �������

7��� �89 ��
	
 ��
 ����� 
�
��	�� �
�� �� �
��
� ��

� + ,����
� ) ����

� ) ��	 �
�.�
�� 1��� 7 ������#� ��
 ���

��� 
�
��	�� �
�� ����� ��
 �����	�����
 �� � + -�2 �
��� � + (�6 � ��	 � ���������� ��		
�� ������ ���� � �	
�
��
��# �� - �89 ��� ����
 ��:
	
��
� �� 6Æ ��� (56Æ

�
��

� ��
 ��� ���
�� ��
 ��� ����������� ��!
 �

�
�
	��	�
� ���� � �
�� ��9
 �� ��6 �� ��� ���
 ��
�� ��
52�2 �(6��� �� %��� ��	

�
�� ��� �
 ���
	!
� �
��

�

��	
 �
 ����� �������� ���� ����	 	����������� �! � � �Æ �! � � �"�Æ

#��	
 $�����	 %��� ��������� �� �� �������� ���� �� � &���!

��
 ��� ������������ ��� ��
 �
���� �� ���
�� ,���.
	
����� �	�� �-  ��� ������	 ���� ��	

�
�� ���� �
 �����
���� ����
 
�
�
�� �������������

��� ����������

;� ����	��� �� �
���������# ���
 ���		
� �����
	� ��

��	
 
/�������� ������ �� �
���� ��
 �<� ���
� ��
 �<�
���
 ���
	� ��
 ������� �����
 �	
��
��# �� � ���

���		
� �����
	 �
��� ��
 ���
�� 	
������
 �	
��
��# ���
�� ��� �

� ����� ���� ��
 �	���������� ���
 ���
�����
�
���� �� ������
 �� ����	��
�# �	
������� ��
 �
�� ����
�	������� �� ��
 �����
	�

���������

��� ��������	
����� ���	�������� ����� �	�� �� ������
 	��
��	�������� ���������� � �������  !� "�#�����	���� �	����
���� �������� ����	�
����
 ����	��
 ����������� ��� ������
�� �����

��� �� ��	��� 
�� ���� ������ �� ������! ��� "	�#$���% �" ���� ���	
��
�&�	� �� �' "	�#$�������( �� $��� $�����	����	� ������
���� �� ��������	
����� ���	��������� )
����!��� *���� +$!�
����� ,,� �--.�-/�

�-� *� )���0��	� +� 1
�0�	� +� 2���� 
�� 3��� 4�		��	
� ����$�

���� �" 
 ���� ���		�� ��
�&�	 � ����� &% '�	�� $���! ���
5�6 �������( �� !%�� $�����	����	� $&�� ��������� �� '��
�����	� (���� 	����	���� �� ��������	� ��
�������
� 3	
0� +$��
�	�
� ��,�� ����� ,� 78�

��� ��1� �
$� $����������� �� ��������	
����� ���	��������� )��
�% ����	�������� 9�' :�	;� �77��

�<� �� ��	����,�$��� ��� ��	����������)��� �������
 ������
�)�� ���� �	��� 
�� = "�	� >��?�	���% �	���� 9�' :�	;�
�77��

167Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



A Combined Method for Fast 3-D FEM Modeling of NDT Signal 

LIN Heyun, S.L. HO1, H.C. WONG2

Department of Electrical Engineering, Southeast University, Nanjing 210096, P. R. China 
1Department of Electrical Engineering, 2Industrial Centre, Hong Kong Polytechnic University, Kowloon, Hong Kong 

Email: hyling@seu.edu.cn; eeslho@polyu.edu.hk 

Abstract�A combined method for the fast 3-D Finite Element 
Method (FEM) modeling of defect responses in non-destructive 
testing (NDT) of electromagnetics is presented. The method consists 
of three numerical techniques including, namely, ‘zoom-in’ technique, 
‘difference field’ technique and ‘iterative solution’ technique. With 
the ‘zoom-in’ technique, the computational zone focuses onto a 
relatively small domain around the defect. Using the ‘difference field’ 
technique, the 2-D field solution corresponding to the case with no 
defect can be used to obtain the 3-D modeling results quickly. With 
the ‘iterative solution’ technique, the matrix equation system from 
the 3-D FEM modeling of NDT probe signals can be solved readily. 
Significant computer resources can thus be saved. 

INTRODUCTION

Numerical methods, such as Finite Element Method 
(FEM) and Boundary Element Method (BEM), have been 
applied successfully to study many NDT problems in the 
past decades [1]. Most of these methods focus on the 
development of effective formulations instead of 
calculation techniques. However better effects can be 
realized if efficient techniques and effective formulations 
are developed together. In the 3-D modeling of defect 
response prediction and defect reconstruction, a large 
linear algebraic equation is generated and most algorithms 
require enormous computer resources when evaluating the 
multiple solutions of the governing equations. The 
development of effective and efficient calculation 
techniques to simplify the numerical modeling would be 
highly useful. Indeed a very successful ‘zoom-in’ 
technique that requires very limited computer resource 
when studying the defect responses of 3-D remote eddy 
current effect has been reported [2]. The ‘difference field’ 
technique has also been applied in the fast simulation of 
eddy current testing signals [3]. Subsequent studies by the 
authors recently show that these techniques can be 
enhanced further to save additional computer resources in 
most 3-D FEM modeling of NDT problems by combining 
an iterative solution technique as described below. 

This paper presents a combined method that saves a 
significant amount of computation cost in modeling 3-D 
NDT problems. The basic principles of the technique are 
described in details in the full paper. The modeling of a 
benchmark problem provided by JSAEM shows that the 
proposed combined method is very promising in the 
simulation of electromagnetic NDT problems. 

BASIC PRINCIPLES

In most cases, the size of the real defect is very small 
compared with that of the specimen being studied. Hence 
the influence of the defect is only noticeable in the vicinity 
of the defect. Fig.1 shows the relative amplitude variation 

of the circumferential component of the magnetic vector 
potential A in an eddy current test system comprising of a 
tube having a 50% inner diameter (ID) defect. Hence a 
‘zoom-in’ technique can be used to confine the 3-D 
modeling to a relatively small domain around the defect. 
This technique has successfully been applied to study the 
3-D remote field eddy current effects with relatively few 
computer resources [2].  

Fig.1 Relative Variation of |A�| Due to a 50% ID Defect 

If the difference between the fields with and without 
defect is chosen as the unknown variable, the ‘difference 
field’ can be obtained by solving the following FEM 
matrix equation: 

]][[]][[ uKuKK ������            (1) 

where K is the FE stiffness matrix and u denotes the 
potential functions employed, K� and u� are, 
respectively, the variation of K and u due to the defect. 
Note that u can easily be obtained by extending the 2-D or 
axial-symmetric solutions to 3-D in many cases such as in, 
for example, the inspections of large plates and long 
tubes/rods using pancake and co-axis coils. The other 
advantages to choose the ‘difference field’ as the unknown 
is to avoid the re-meshing procedure, which is normally 
required when modeling the impedance of coils moving 
over a period of time. 
Since the real defect is usually very small, K� is 

typically a slight perturbation to K. Example calculations 
have shown that if an iterative algorithm is applied to the 
FEM equation system (1), the iteration process is rapidly 
convergent. Besides, the solution of whole matrix equation 
system stemming from 3-D FEM modeling can be avoided 
by applying an iterative algorithm.  

APPLICATION IN A BENCHMARK PROBLEM
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A benchmark problem provided by JSAEM has been 
studied in order to validate the proposed method. In the 
problem a pancake coil is used to inspect cracks with 
different depths in a square Inconel plate as shown in Fig.2 
[4]. The inner and outer diameters of the coil are 1.2mm 
and 3.2mm respectively. The coil eight is 0.8mm. The coil 
lift-off is 1.0mm. The frequency of the applied current is 
300kHz. 

140

140

10

z
y

x

1.25

Fig. 2   The analyzed model 

The objective of the modeling is to compute the 
change in impedance as the coil moves along the cracks 
and to compare the values with the corresponding 
experimental results provided by JSAEM. Fig.3 shows the 
eddy current distributions on the surface of the metal plate 
for four coil positions: y=0.0, 2.5, 5.0 and 10mm. It can be 
seen that the eddy current distributions are quite 
reasonable. 

(a) y=0.0mm                  (b) y=2.5mm 

(c) y=5mm                   (d) y=10mm 

Fig.3  The eddy currents on the surface of the plate 

Fig. 4 and Fig.5 show the impedance perturbations for 
cases with inner defects and outer defects, respectively. All 
the calculated results will be explained and reported in the 
full paper. 
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Fig. 4  Impedance perturbation for inner diameter defects 
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Fig. 5  Impedance perturbation for outer diameter defects

CONCLUSIONS

A combined calculation method for fast 3-D FEM 
modeling of NDT probe signals has been successfully 
presented. Based the combined method, the calculated 
region can be confined to a relatively small domain around 
the defect, instead of examining the entire field domain in 
the conventional methods. Furthermore, an iterative 
algorithm can be used to obtain the solution of the matrix 
equation system quickly. With the proposed algorithm 
significant computer resources can be saved. The proposed 
method has been applied in the derivation of the 3-D 
solution of a benchmark problem with relatively few 
computer resources. It has been shown that the proposed 
combined method is highly effective and efficient in 
electromagnetic NDT simulations, particularly for 
problems having small perturbations only. 
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Abstract � The analysis of magnetic flux leakage pipeline data in-
volves both a scanning part for defect recognition and an analysis part to 
describe the defects found. In the analysis part, it is often important to 
discriminate between vicinal (close-by) defects and to examine these 
defects separately. We applied an inverse method (L2 minimum norm 
reconstruction) and a novel post-processing technique based on equiva-
lent ellipsoids to resolve vicinal defects measured in a test pipeline. The 
magnetic fields were computed with the help of a boundary element 
model. We found that using inverse algorithms, thresholding, and post-
processing techniques, the automatic discrimination of vicinal defects 
was possible in 15 out of 16 cases.  

INTRODUCTION

Worldwide about three million kilometers of oil and gas 
pipelines are in use. This number increases each year by ap-
proximately 25,000 km. Inspection of these pipelines is of 
crucial importance to avoid large financial losses and envi-
ronmental damages. 

 Data sets from oil and gas pipeline inspections, such as 
magnetic flux leakage (MFL) data, are typically scanned with 
the help of automated algorithms. Nevertheless, a validation 
of the findings after scanning has to be performed by a visual 
crosscheck on a regular basis. Especially for the detailed 
analysis of flaws that are in close vicinity to each other, it 
would be highly desirable to perform an automated computer-
based analysis. This analysis should give a discrimination of 
these flaws and an estimate of their respective size and posi-
tion.  

The goal of our work is to develop a technique capable to 
discriminate vicinal defects in pipelines on the basis of in-
verse algorithms applied to MFL data.  

METHODS

The basic principle of the MFL method is the application 
of a static, uniform magnetic field that is coupled into the 
metallic wall of the pipeline. Flaws in the pipe wall generate 
magnetic field perturbations, which are called leakage fields 
when they leak out of the pipe. The measured leakage of the 
magnetic flux is analyzed off-line in order to extract the prop-

erties of the flaws in the pipe wall such as the extent and the 
depth. 

The analysis in this paper is based on a measurement data 
set of a test pipeline with given flaw geometries provided by 
H. Rosen Engineering. Measurements were carried out on a 
set of flaws (defects) in the pipe wall. The flaws were located 
on the outside of the pipe and had a depth of 50 % of the wall 
thickness. For the detection of the stray field, two different 
types of sensors were used simultaneously: a Hall sensor 
measured the axial magnetic field (in the following indicated 
by Bz) and a coil sensor measured the axial derivative of the 
radial magnetic field component (in the following indicated 
by B

�
). For the inverse computations, we assumed stationarity 

and we restricted the number of measuring points included in 
each inverse computation so that this number was as small as 
possible (reduced computation time) while still covering the 
relevant field information. 

Fig. 1. Defect geometries with numbering (approximate length in z-direction: 
180 cm).  

For the numerical field computation (forward problem), 
we applied the analogy of the current sheet convention (as 
opposed to the pole sheet convention) [1]. The current sheet 
convention employs currents (often line-like current ele-
ments) to approximate the magnetic field produced by a mag-
netized body, while the pole sheet convention does so with 
the help of a pole density. Line-like current elements can 
generally be approximated by current dipoles. Thus, the 
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sources of the magnetic stray field were modeled employing a 
sheet of electric current dipoles in an electric volume conduc-
tor. We have chosen this approach because of the software 
available. A section of the pipe wall was modeled with the 
help of the boundary element method (BEM). A total of 5768 
linear triangular elements (triangle side length of 6 mm) were 
used. In the area, where the highest potential gradients were 
expected, a local refinement was applied and the triangle side 
length was approximately halved. 

For our inverse solutions, we used the L2 minimum norm 
least squares, which was found to be a very robust method in 
previous investigations [2,3]. The source (dipole) positions 
were predefined on a quadratic grid with an extent of ap-
proximately 280 mm � 280 mm that was located below the 
array of the measuring points in the middle of the BEM 
model. 

A novel post-processing technique based on equivalent el-
lipsoids [4] was used to extract the flaw extent from the 
thresholded current density distribution and to automatically 
discriminate the vicinal flaws. An equivalent ellipsoid was 
defined as a 3D ellipsoidal object fitted (using a principal 
component approach) to a current density distribution region 
in which the magnitude of the currents was above a pre-
defined threshold. The crucial parameter for this procedure is 
the threshold value, which was set here to a fixed value (70% 
of the maximum dipole strength).  

RESULTS AND DISCUSSION

Fig. 2 shows the results of the inverse computations for 
defects #15 and #16. The inverse algorithm is able to dis-
criminate both defects and the equivalent ellipsoids describe 
the extent of the defects quantitatively.  

Fig. 2. Magnetic stray fields of two circular flaws (#15 and #16) and their 
original size (white line) (a) and reconstructed dipole distribution with esti-
mated equivalent ellipsoids (b). 

Except for flaw #10 from the defect group #8 / #9 / #10, 
all flaws were automatically discriminated. The estimated 
extent error is given in Fig. 3. Here it is important to note that 
the minimum norm mesh for the reconstruction had a resolu-
tion of 7 mm.  

Fig. 3. Estimated extent error for all flaws. Flaw #10 was not resolved. 

Since the threshold value applied to the current distribu-
tion is crucial for the extent estimation, current research is 
focused on the automatic and adaptive estimation of this 
threshold.  

Unlike in our previous study [2], we found that the esti-
mation of the defect extent in z-direction (along the pipe) was 
more accurate than in circumferential direction. The overlap-
ping leakage fields of the vicinal defects can at least partially 
explain this effect. Axially oriented defect groups (e.g. #13 / 
#14) showed better circumferential extent estimation, and 
circumferentially oriented defect groups (e.g. #15 / #16) 
showed better axial extent estimation.

In conclusion, inverse algorithms in combination with 
equivalent ellipsoids post-processing allow the automated 
discrimination of vicinal flaws in MFL data.
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Abstract � MFL (Magnetic Flux Leakage) type NDT (Non-
destructive testing) is one of the remote sensing systems. In the system, 
defect signals are measured under the running of the sensing module 
consisted of permanent magnet, yoke, and sensors. Because of the strong 
magnetic field of the PIG, there could be velocity induced eddy current 
during the sensing, which could cause the distortion of the defect signals. 
In this paper, the velocity induced eddy currents of the running sensors 
in MFL type NDT are analyzed by 3D FEM. The distortions of the 
sensing signals are analyzed and the method to deduce the velocity speed 
of the sensors are suggested. 

I. INTRODUCTION

In the magnetic flux leakage (MFL) type non-destructive 
testing (NDT) system, sensor modules are consisted with 
permanent magnet, magnetic yoke and sensors to detect the 
corrosion defect and any other demages of the gas pipeline. In 
the system, the object pipeline is magnetically saturated by 
the magnetic system with permanent magnet and yokes. The 
defect signals are measured during the sensor modules are 
running inside the underground pipeline. So, there could be 
distortion of the sensing signals because of the velocity 
induced eddy current.   

To detect the defects precisely, the sensing signals are need 
to be compensated to eliminate the distortions comming from 
the velocity induced eddy current, media hysteresis, magnetic 
anisotropy, and so on. During the sensing, the velocity of the 
modules are from 1 m/s up to 10 m/s, and average velocity is 
4 m/s. In this paper, velocity induced eddy current are 
analyzed by 3D finite element analysis. The distortion of the 
measured signals are analyzed and compensation scheme to 
eliminate the velocity induced eddy currents are presented. 

II. ANALYSIS OF THE VELOCITY INDUCED EDDY CURRENT

From the Maxwell equations including time and space 
dependent eddy current, the following equations could be 
obtained.  

                   (1) 

where�  is the conductivity of material and v  is the velocity 
of the conductor. The first term on the right of eq. (1) 
represents the current density due to the applied source, the 

second term represents the induced current density, and the 
third team represents current density produced by the speed 
voltage. By employing a frame of reference and Galerkin 
method, integration by parts yields 
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where W is weighting function, n is an outward normal to the 
boundary. As the shape functions are equal to the weighting 
functions, eq. (2) could be represented in matrix form, 
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where the subscript e means that the matrices refer to a 
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In this equation, the eddy current induced by flux changes 
in time and space are both included.  

III. DISTORTION OF THE SENSING SIGNALS 

Fig. 1 shows the eddy current on the pipe surface in 3D 
analysis. Eddy current vortex is produced to prevent the 
change of the flux on the pipe. As the speed increases in Fig. 
2, the radial component of the magnetic field on the pipe is 
decreasing while the axial component of the magnetic field is 
increasing. The change of the magnetic flux causes the 
distortion of the sensing signals. In the metal loss region, 
MFL signals are also distorted as in Fig. 3. As the speed 
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increasing, the maximum signals are decreased and the slopes 
of the signals are increasing. So the speed of the PIG could be 
estimated from the maximum field and the slop of the field by 
using Fig. 4. The velocity of the sensing module could be 
deduced by this curve from the measured signals. So, the pure 
defect signals could be obtained by eliminating the distortion 
signals according to the sensor velocity. 

Fig. 1. Eddy current on the pipe surface (v = 4m/s) 

(a)Radial component             (b) Axial component 
Fig. 2 Changes of the magnetic fields according sensor speed 

(a) Axial component of the MFL signals 

(b) Radial component of the MFL signals 
Fig. 3 Effect of the PIG speed in the defect region 

Fig. 4 Maximum field and slop according to the sensor speed

IV. CONCLUSIONS

In this paper, the velocity induced eddy current in MFL 
type NDT system are analyzed by 3D finite element method. 
As the magnetic field is strong enough to saturate the sensing 
object and the sensing modules are running in high speed, 
there are strong eddy current induced by running velocity, 
which causes the distortion of the sensing signals inevitably. 
The distortion of the sensing signals are analyzed accorting to 
the running velocities. As the velocity increased, the peak 
values of the sensing signals are decreased and the slope of 
the peak value are increased. So the velocities of the sensing 
module could be deduced from the sensing signals. The 
scheme to eliminate the velocity induced distortion could be 
applied succesfully. 
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Abstract - A 3D transmission-line matrix (TLM) model was developed to
simulate the microwave detection of local changes in permeability. The
technique can be used to map local non-uniformities in magnetization.
Numerical modeling was carried out for frequencies that are commonly
used in microwave nondestructive testing (1GHz). A comparison
between experimental and numerically generated curves is provided.
This comparison validated the numerical model proposed. A numerical
implementation of scanning microwave microscopy based on model the
proposed was performed.

INTRODUCTION

The first microwave probe capable of measuring the
spatial variation of magnetic properties was proposed in 1962
by Sahoo [1]. The possibility to perform microwave
measurements on thin ferromagnetic layers in magnetic field
was demonstrated recently [2,3]. A full theoretic model for
these techniques in various geometries is almost impossible
to obtain. This is the reason why a numerical model that is
unconditionally stable and that works for different geometries
is very atractive and very useful for future development of
these investigation techniques.

The Transmission Line Matrix (TLM) is a time
domain numerical technique that was found to be most
suitable for complex geometries [4]. The method is a direct
numerical implementation of the Huygens principle. The
wave front at each iteration for a certain mesh node is a result
of the waveforms generated at neighboring nodes in the
previous iteration.  The TLM is a physical discretization
approach and this method does not require the solution of the
differential equation in whole space being modeled. The
solution of differential equation is implemented in the
scattering matrix formulation. This matrix gives the time and
spatial solution for the smallest entity (called node) that can
be modeled using TLM method. The coefficients of this
matrix are obtained in such a way that charge conservation
rule is obeyed for the node. This method is recognized for his
unconditional convergence [5] that is achieved for
dimensions of nodes less than one tenth of a wavelength.
Numerical results were obtained based on the General
Symmetrical Condensed Node [6].

 ALGORITHM IMPLEMENTATION

The main steps of a TLM algorithm are
initialization, scattering and connection. A supplementary
part called scanning was added to these components. This
part involves changing the position of excitation according to
the experimental scanning pattern whereby the TLM
algorithm is repeated for each new position. The time
response for each position is saved in an output file for
further processing. In the initialization step a Gaussian
modulated pulse is injected in the TLM mesh in the position
of the microwave probe. The voltage injected is given by:

( )
( )( )ϕπσ +−=

−−

o

tt
i ttfAeyxV

o

2cos),( 2

2

2              (1)

In relation (1) the following notations were used: A-
amplitude; σ-standard deviation; t–time; to-delay; f-
frequency; ϕ-phase. The pulse parameters have been
modified to obtained the best fit with a reflected signal from a
material with known permeability. In further experiments
these parameters were kept the same.

The scattering matrix was implemented according to
the methodology proposed by Trenkic [7]. This method is
based on an algorithm that explores the symmetry of the
scattering matrix and decreases the number of operations
associated with this step. The voltages at all ports can be
obtained using the following equations:

diftemp
r

inj VVV −=                    (2)

temp
r

ipj VV =                       (3)

In relations (2) and (3) the following notations were
used:

( )difkpiknitemp VVVV ++=
2
1                     (4)

injipjdif VVV −=                 (5)

The voltages are obtained considering all circular
permutations of indices (x, y, z) denoted in general form as (i,
j, k). The S11 parameter cannot be obtained directly from the
TLM algorithm because an incident field cannot be separated.
To solve this problem two successive runs of the program are
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needed. The first run is performed with excitation without a
reflecting object. This run will provide data for the reference
port.

RESULTS

An experimental set-up was designed for this
application [8]. In this set-up the magnetic sample was placed
over an electromagnet that was energized by a dc current.
The sample and the electromagnet assembly were located
underneath the microwave probe. The electromagnet used in
the present work produced 250 Gauss at 100 mA (16 Volts)
and its B versus I characteristics were approximately linear in
that range as determined with a Gauss-meter. The microwave
probe was operated in reflection mode [9]. The probe position
over the sample could be changed using various micrometers
and stepping motors. Figure 1 shows a comparison between
numerical and experimental resonance curves obtained for a
CO-NETIC alloy sample [10]. The graph shows a good
agreement between experimental and numerical data. The
relative change in S11 parameter determined by permeability
variations has the same value for both cases (1dB). A 5 %
shift that exists between the numerical and experimental
curves has been generated mainly by the difference in
frequency step that exists between the two methods ( ∆fexp =
10kHz, ∆fnum = 200kHz)

CONCLUSIONS

A numerical model for scanning microwave microscopy for
magnetic materials was implemented. The model is based on
the TLM algorithm. The experimental results obtained by
authors validate the numerical model proposed. The
dimensional characterization of structures with different

permeabilities can be numerically simulated. The scanning
process was also implemented into the numerical model. The
results obtained show that the numerical model can be run in
parallel with the experimental scanning. This allows a better
characterization of discontinuities in magnetic permeability
detected using microwave techniques.
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Figure 1. The experimental and numerical curves obtained for S11 parameter that validates the TLM model proposed for detection of local variation in
permeability using microwave techniques
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Abstract: In this paper a new technique is presented to excite the fields 
inside a mode stirred chamber down to very low frequencies. The 
proposed approach is then simulated using the Method of Moments 
(MoM). In a previous paper [1] it was shown that this type of simulation 
agrees very well with actual measurements. The proposed technique is 
based on the use of wires parallel to the coordinate axis of the chamber. 
Each wire and the walls parallel to them form a coaxial transmission line 
that can support a transverse electromagnetic (TEM) wave also called a 
transmission line mode. The TEM wave has no frequency limitation being 
capable of exciting fields from DC to any frequency.

INTRODUCTION 
The conventional mode stir chamber is a rectangular cavity, which 
uses an antenna to excite the fields inside of it. In order to 
homogenize the fields throughout the volume of the chamber it 
uses a metallic stirrer similar to a large paddle wheel. When the 
paddle wheel turns, being metallic, it changes the boundary 
conditions inside of the chamber producing a homogenization of 
the fields. This is a technique used by some microwave ovens to 
eliminate hot spots. The mode stirring approach only works when 
there is a substantial number of propagating modes inside the 
cavity, thus restricting the low frequency operation of these 
chambers. This is discussed in detail in a previous paper [1]. That 
paper proposes the use of two wires, parallel to one of the 
rectangular axis of the chamber. These wires and the four walls 
parallel to them form a coaxial transmission line, which supports a 
TEM wave, also known as the transmission line mode. The fields 
inside of the chamber can be stirred by changing the relative 
excitation between the two wires in phase, in amplitude or both. It 
was shown that with a very small amount of power substantial 
fields can be excited inside the chamber down to very low 
frequencies. In theory the frequency can be extend to DC. The 
antenna used in the present excitation method is not capable of 
exciting the TEM mode of propagation.  

THE PROPOSED METHOD 
As mentioned before in the previous paper [1] two wires parallel 
to one of the coordinate axis was used. The fields were stirred by 
changing the phase between the wires. The field at any point 
inside the chamber is the result of the two components produced 
by the excitation of each of the wires. Since there are only two 
components, and if the phase between the wires is changed from 
00 to 1800, in a reasonable number of steps, it is expected that the 
fields should cover all possibilities from being in phase to out of 
phase. In this way, at all points within the chamber, it is 
reasonable to expect that the fields have attained their maximum 
value at some phase on the 1800 interval. This maximization of 
field levels within a 1800 phase interval does not necessarily occur 
with the use of a paddle wheel. The simulations and 
measurements demonstrated that, as expected, the fields 
transversal to the wires were stronger than the longitudinal 
components because of their TEM nature. If the wires were 
parallel to the x-axis, then the Ey and Ez components were larger 
than the Ex . Therefore a more uniform field can be obtained if 
three wires, one parallel to each coordinate axis, is used. Now 
there will be always two large TEM components parallel to each 
of the coordinate axis. This is proposed in the discussion section 

at the end of the paper [1]. The present paper demonstrates that 
indeed this occurs. 

Fig 1 illustrates the geometry of the chamber. The triangles are the 
patches used by the MoM simulation program for the low 
frequencies. The three wires are shown by the orthogonal thick 
gray rod-like structures. They are situated about 40cm from the 
closest wall placed midway along the wall extent in order to 
create a more uniform field. The chamber dimensions are 5.2m x 
4.6m x 2.7m in the x, y, and z coordinates respectively. Each wire 
is fed by an independent amplifier at one end, and is terminated 
with a 50-Ohm load at the other end. The simulation program 
calculates the fields inside the chamber at the vertices of cubes 
20cm on a side 

SIMULATION RESULTS 
The simulation results shown below were obtained by using a 
MoM program. The wire parallel to the z-axis was used as 
reference and the phases of the other two wires were changed in 
steps of 1200. The reason for this choice was that three parallel 
vector phasors having the same amplitude and phases 00, 1200,
and 2400 would add to zero. This is the case for each of the 
rectangular components of the vector phasors throughout the 
chamber. In each of the plots there are nine plots corresponding to 
the phases of 0/0/0, 120/0/0, 240/0/0, 0/120/0, 120/120/0, 
240/120/0, 0/240/0, 120/240/0, and 240/240/0. The first phase is 
between the x-axis parallel wire and the z-axis parallel wire. The 
second is between the wire parallel to the y-axis and the wire 
parallel to the z-axis. The plots are for the total Electric field at 
different points along a line parallel to x-axis, 1m above the cavity 
floor (z=1m) and in the middle of the yz face (y=2.3m). For the 
chamber used this corresponds to (x,2.3m,1.0m). The simulation 

Fig. 1 – Chamber with MoM Triangular Patches and 3
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calculates all three rectangular components of the fields. The 
estimated “total field” given by: 

may be as much as 3 dB larger than the actual maximum field. 
This maximum can be achieved only if the phases of the three 
components are equal. Keeping this in mind Eq.1 gives an 
indication of the overall field strength. Fig 2 shows the result for 
the frequency of 10 kHz. The next two figures are for 10 MHz and 
100 MHz. The chamber cut off frequency is 43.5 Mhz. Therefore 
only at 100 MHz there are propagating modes present. 

What is important in these plots is to observe the maximum value  

of the Etotal-Field when the phases are changed since this is the 
maximum EUT exposure level. In the first two plots, Fig.2 and 
Fig.3, the maximum field is attained for the phases 240/240/0 
most of the time. Only for low values of x, between 1.0 and 1.5 m 
that other phases produce a larger field in Fig.2. In Fig.4, for 100 
MHz, different phases combinations contribute for the maximum 
field along the x-axis. 

Notice that the total input power for all three plots is only a few 
mW. Multiplying the power by 10000 multiplies the fields by 
100.Therefore for 10 kHz, with 150W total input power, an 
average field of 10 V/m can be expected. For 10 MHz, with 31W 

again an average field of about 10 V/m can be expected.  
At 100 MHz, with 81W the average field is about 50 V/m.  This 
decrease of the power with the frequency is expected since now 
more of the modes excited in the cavity are becoming propagating 
modes. 

Conclusion and Recommendations 
The present configuration of three wires was an improvement 
over the two wires discussed in [1]. In the low frequency plots it is 
clear that the fields increase monotonically as x increases. At x = 
4.2m the fields increase substantially because of the proximity to 
the y directed wire as can be seen in Fig.1. Presently different 
wire configurations and positions are under study and will be 
reported in the future as they become available. 
The fact that more power is required for low frequencies to 
produce high field strength can be attributed to the fact that, 
although many cavity modes are excited at any frequency, only 
the transmission line mode propagates at the frequencies below 
the cavity fundamental resonance. Many cavity modes are 
necessary to satisfy the local boundary condition near the walls 
where the wires are attached. However these modes are all 
evanescent and cannot be felt throughout the cavity. This is 
discussed in detail in [1] and explains why the chamber cannot 
operate at low frequencies when excited by the antennas used 
today. As the frequency increases above the fundamental cavity 
resonance many of the excited cavity modes become propagating 
and start to contribute to the fields inside the chamber. Since high 
power amplifiers are substantially less expensive for low 
frequencies this fact may not be a problem. 
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Fig.2 – Etotal for Nine Phases. 10 kHz - Pin = 15 mW 

Fig.3 – Etotal for Nine Phases. 10 MHz – Pin = 3.1 mW

Fig.4 – Etotal for Nine Phases - 100 MHz - Pin = 8.1 
mW

(1)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1.0 1.5 2.0 2.5 3.0 3.5 4.0
x - meters

Et
ot

al
 V

/m

0/0/0 120/0/0 240/0/0 0/120/0 120/120/0

240/120/0 0/240/0 120/240/0 240/240/0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1.0 1.5 2.0 2.5 3.0 3.5 4.0
x - meters

Et
ot

al
 V

/m

0/0/0 120/0/0 240/0/0
0/120/0 120/120/0 240/120/0
0/240/0 120/240/0 240/240/0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.0 1.5 2.0 2.5 3.0 3.5 4.0
x - meters

Et
ot

al
 V

/m

0/0/0 120/0/0 240/0/0
0/120/0 120/120/0 240/120/0
0/240/0 120/240/0 240/240/0

222
zyxt EEEE ���

177Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Working Nonlinear Transient Eddy Current Problems with Time Harmonic Solutions

Kent R. Davey
 2275 Turnbull Bay Rd., New Smyrna Beach, FL 32168-5941, USA

Abstract - The classical approach to solving transient problems

is a finite difference based time stepping procedure. A powerful

alternative when motion is not involved is to use time harmonic

solutions to build the transfer function of the system,

appropriate for a spectrum of source excitations. This paper

shows how nonlinear problems are approached with this method,

and how the transfer function is derived using variable metrics

and multivariate splines. 

Index terms - Transient, eddy current, time harmonic, Laplace.

I. INTRODUCTION

Nearly all transient field problems are solved using a time

stepping procedure in which the incremental changes are either

explicitly or implicitly determined. These approaches are

without doubt, the most general, but not necessarily the most

efficient, especially when velocity effects are not involved. This

paper discusses the use of time harmonic solutions to build a

transfer function, and then to employ Laplace transform theory

to generate the time transient. Among the advantages of this

approach are the following:

1. Once the transfer function is known, the computation of the

complete transient response is usually rapid.

2. No cumulative error accrues with time as is true in all time

stepping procedures.

3. The solution to a multitude of  source excitations is

available, not simply the one obtained with the time

stepping approach. 

The technique is only valid when no velocity is involved.

Within this context, however, even nonlinear effects can be

taken into account. Nonlinearities get incorporated into the

transfer function through the choice of excitation strength

throughout the harmonic analysis. 

II. Explanation of the Technique

The steps involved in this procedure are as follows:

1. Estimate the characteristic time constant for the system.

This is usually accomplished by looking at the L/R time

constant. Of importance is the shortest time constant for the

system.

2. Execute a parametric analysis of the system over the

complete spectrum of frequencies from 0 Hz to twice the

reciprocal of the shortest characteristic system time. 

a. If the excitation is current specified, this step is a

simple loop incrementing frequency.

b. If the excitation is a voltage specification, a nested

loop must be employed, the outer loop being

incremented over the frequencies required, and the

inner loop over the current range expected. The current

range follows immediately at dc through the ratio of

the voltage and the resistance. At every computation,

both the flux linkage with the excitation coil(s) is

required in addition to the desired output quantities,

e.g., torque, force, etc. 

3. A functional fit between the desired output quantities and

the current must be computed. Bivariate splines and radial

basis functions are two candidates for realizing this function

fit.

4. For a general voltage excitation, a nonlinear inverse

algorithm must be employed to link the output quantities

and the current to the voltage at any frequency. This

nonlinear inversion is how saturation effects are

incorporated into the solution. If the problem is linear, this

step is trivial since any output is directly related to the

voltage through the resulting current. 

5. The current or torque frequency dependence allows an

estimate of the system transfer relation. Many choices for

the number of poles and zeros are possible; the rule is to

begin with one pole and to add additional poles and zeros

as necessary consistent with the frequency response. 

6. Substitute the Laplace s domain parameter for the

frequency.

a. Multiple by the Laplace transform of the source signal

if available, and perform the inverse to get the time

domain response for the parameter of interest. 

b. If the Laplace transform of the signal does not exist,

either multiply by 1/s and invert to get the unit step

response, or invert directly to get the impulse

response. An estimate of the output parameters follows

by convolution. 

III. THREE DIMENSIONAL NONLINEAR TRANSIENT EDDY

CURRENT PROBLEM

Team problem 24 and problem 27 serve as a good test bed

for this theory.  Fig. 1shows the geometry of problem 24. A

solid steel hub and rotor are fixed at an angle of 22° from the

vertical. Two series wound 350 turn coils are excited with a

step voltage of 23.1 V at time zero. The output flux, desired

current, and torque are desired as a function of time. The
Manuscript received Nov. 1, 2002. K. Davey (386) 426-1215, fax (253)

540-8788, email kdavey@Neotonus.com.
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Fig. 1 Computed Current with one and two pole models. 

conductivity of the steel is 4.54 106 S/m. Details of the

measurements and the nonlinear material are discussed in [1].

A time stepping finite element procedure has been successfully

employed in the solution [2].

IV. ANALYSIS RESULTS

Since voltage is impressed on the coils, an analysis of the

device was required for a spread of currents and frequencies,

computing the coil flux linkage at every step. Since the

resistance of the coil is 3.09 S, the current was allowed to

change from 1 A to 8 A in 8 steps, varying the frequency from

0 Hz to 100 Hz in 12 steps. A 3D boundary element analysis

was employed for this task [3]. 

The Bode plot function is determined by hypothesizing

possible options, then determining the constants in those

options using algorithm is based on Golden Section search and

parabolic interpolation, also found in [4]. It is recommended

that the simplest Bode function involving only one pole be

attempted. It is useful to force the Bode relation to be correct at

frequency f equal 0. 

(1)

The unknown c is established by determining the minimum of

a functional over the complete frequency spectrum, from f=0 to

the final frequency fN,

(2)

A double pole, one zero approximation would involve two

unknowns,

(3)

Single and double pole models are investigated. The double

pole approximation is only slightly improved; if the single pole

approximation is close, adding the second pole will introduce

a faster response decay constant, a result that is not normally

desired.

Once the Bode relation is determined, the Laplace transform

for the system is found by substituting the Laplace variable s for

frequency f. This is multiplied by the source Laplace transform,

and the resulting expression inverted. For example, given (3),

the current’s step response to a voltage signal is 

(4)

Shown in Fig. 5 is the computed time response for the current.

The two pole model does indeed add in an unwanted faster time

constant. The two pole system more closely models the

experiment at the beginning of the transient than does the single

pole model. However, the single pole model exhibits a better

overall fit. 

V. CONCLUSIONS

For problems that do not involve velocity, deriving the

transfer function from time harmonic solutions affords a useful

way of investigating a multitude of responses. Evaluations of

the responses with time is fast, and no accumulation of errors

surfaces, as with the more typical time stepping procedures. If

possible, the time harmonic responses should be registered

close to the actual source values to incorporate nonlinear effects.

The simpler Bode relations with one or two poles is

recommended. The form of the Bode relation id different for

every variable of interest, but the form, i.e., the number of poles

and zeros) should not change much.
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Abstract�To alleviate the difficulties encountered in the generation 
of meshes for the FE method in solving thin skin depth problems 
involving 3-D eddy current, particularly in cases in which the eddy 
current region is only a fraction of the entire domain, a new technique 
based on a combination of FE and meshless methods is proposed. 
Numerical approach to uphold the mathematical properties of the 
combined shape functions in terms of consistency and linear 
independence is also investigated. It is shown that a very coarse mesh is 
sufficient with the proposed algorithm. To validate and demonstrate the 
advantages of the proposed method, typical numerical results on a 
prototype high frequency 3-D eddy current problem are reported. 

COMBINED METHOD OF FE AND MESHLESS METHOD FOR THIN SKIN DEPTH
3-D EDDY CURRENT PROBLEMS

Although finite element (FE) methods are widely used 
and recognized as the most powerful numerical technique by 
academics and engineers alike in solving 3-D electromagnetic 
field problems, they are not equally applicable to all kinds of 
field problems such as in, for example, large scale thin skin 
depth 3-D eddy problems in which the eddy current region is 
only a fraction of the entire domain. For these thin skin depth 
problems using 3-D FE methods, one normally has to make a 
compromise on the need for fine meshes (to ensure the 
solutions in the eddy current regions are sufficiently accurate) 
and the need for minimizing the computer resources. Thus, a 
flexible method to add or remove meshes or nodes 
irrespective the connectivity of the existing meshes or nodes 
is highly desirable. In this regard, meshless methods are ideal. 
On the other hand, meshless methods are notorious in 
enforcing boundary and interface conditions when they are 
used to solve boundary value problems. To make full use of 
the advantages of FE and meshless methods, a combined FE 
and meshless method is proposed in the numerical study of 
large scale 3-D eddy current problems to allow one to obtain 
sufficiently accurate numerical solutions from coarse meshes. 
In order to separate the meshless and the FE shape functions, 
the bridging scales are added to modify the meshless shape 
functions to preserve the desirable mathematical properties of 
the resulting function space in terms of consistency and linear 
independence.  

Shape Function of Meshless Methods 

The development of the shape function of the proposed 
meshless method is based on the moving least squares 
approximation. For any function ),,( zyxA� , its approximation 
based entirely on the meshless method in terms of a set of 
nodes in the solution domain is 

���

�

n

j
j

meshless czyxzyxA j

1
),,(),,( ��                         (1) 

where ),,( zyxmeshless
j�  is the shape function of the meshless 

method, and its details are referred to [1].  

Shape Function of the Combined Method 

For the proposed method, the meshless method is only 
used to refine the FE solutions in the eddy current regions. 
Thus, the approximation of the solution variable in most of 
the solution domain is expressed in the standard form of FE 
methods. For the eddy current regions, the general 
interpolation formula using both FE and meshless shape 
functions is 

j
j

Meshless
j

i

FEM
ii czyxzyxNAzyxA ��� ),,(),,(),,( �����       (2) 

where, ),,( zyxN FEM
i  is the FE shape function. 

To uphold the mathematical properties of the entire bases 
regarding consistency and linear independence, the bridge 
scales as proposed in [2] is used. The basic concept of the 
bridging scales is based on a hierarchical decomposition of a 
function A�  which is dependent on some projection operator 
P to represent, for example, the projection of A�  onto the span 
of FE shape functions. To decompose the solution variable 
into two different parts, i.e., the first one that is approximated 
by meshless shape functions and the second one being 
represented by the FE shape functions, one employs the 
property of a projection operator such that multiple 
projections of the function will leave the function unchanged, 
i.e., PP A� =P A� . By using this concept, the total function A�
of (2) can now be reformulated as  

�� ��

�����
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The last term on the right hand side of (3) is called the 
bridging scales. The reason for including the bridging scale 
term is to make the term that is approximated by the meshles 
shape functions to contain only the parts of the solution 
variable which are not included in FE interpolations. 
Accordingly, the meshless shape function based on the 
bridging scales is modified as 

� ��

���
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Thus, the general interpolation formula for the proposed 
combined FE and meshless methods is 

j
j

meshless
j

i

FEM
ii czyxzyxNAzyxA ��� ),,(),,(),,( �����         (5) 

The details about the discrete mathematical model and the 
numerical implementation of the proposed combined FE and 
meshless method will be given in the full paper. 

NUMERICAL APPLICATIONS

To validate the feasibility of the proposed algorithm for 
solving practical thin skin depth eddy current problems, the 
electromagnetic fields around a circular conductor carrying a 
20kHz harmonic current flowing in the z-coordinate direction 
as shown in Fig. 1 is investigated. The radius of the circular 
conductor is 2mm. By setting a cylindrical surface, S1, which 
is co-centered with the conductor and is sufficiently far from 
the conductor surface, S3, so that the field on S1 can be 
approximated as zero, this pseudo-3D eddy current problem is 
formulated as 

0)()(

regionsresidualIn the
0)(

)()(

conductorIn the

���������
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In the numerical implementation, the entire domain is 
firstly discretized into a coarse FE mesh. Some nodes are then 
added into the thin skin depth eddy current region (the 
conductor) as shown in Fig. 2. The comparison on the 
accuracy of the computed results using the proposed method 
and those obtained from a close-form expression is given in 
Fig. 3. The distribution of the magnetic flux density along the 
radial direction is shown in Fig. 4. From these numerical 
results, it is very clear that (1) the results of the computed 
eddy current distribution of the proposed method and those 
obtained from the close-form expression are nearly the same, 
and they are indeed indistinguishable in the figure; (2) besides 
producing nearly exact solutions of the eddy current fields in 
the conductor where both FE mesh and meshless nodes are 
used, the proposed algorithm also produces very accurate far 
end magnetic flux density results even if very coarse FE 
meshes are used. Thus these numerical results positively 
confirm the feasibility of the proposed algorithm for solving 
practical large scale 3-D eddy current problems.   
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Fig. 1. A circular conductor carrying a 20kHz harmonic current flowing in 
the z-coordinate direction 

Amplified

Fig. 2. The finite element mesh and the node arrangement of the proposed 
method Surface S2. Left: global survey of the FE meshes and meshless nodes, 

Right: amplified view of the conductor region 
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Abstract – An integral equation satisfied by a single unknown surface 
current density is formulated for the analysis of the quasistationary field 
of a cylindrical conductor immersed in a transverse time-harmonic 
magnetic field. This is an alternative to the classical boundary integral 
equations formulated in terms of two unknowns, the magnetic vector 
potential and its normal derivative over the conductor surface. The 
accuracy of the results computed by the proposed solution method is 
demonstrated by comparison with results from an exact analytical 
method.

I. INTRODUCTION 

Various finite difference and finite element techniques 
have been developed for computing eddy currents in 
homogeneous and nonhomogeneous solid conductors [1]. In 
these techniques, the entire conducting region is discretized 
and the respective nodal unknowns have to be determined 
throughout the region. Eddy currents in homogeneous 
conductors can also be analyzed by using boundary integral 
equations formulated in terms of two unknowns, for instance, 
the magnetic vector potential and its normal derivative 
distributed over the surface of the conducting bodies [2]. 

 In this paper, a formulation of a single-source surface 
integral equation (SSSIE) is presented for the analysis of eddy 
currents induced in two-dimensional conductors. The vector 
potential in the region inside the conductor is expressed in 
terms of a single unknown surface current density distributed 
over the surface of the conductor, while the potential outside 
the conductor is obtained from the formula of the three 
potentials for Laplacian fields. In order to evaluate the 
accuracy of the proposed method, numerical results have been 
generated using a circular cylindrical conductor and are 
compared with those obtained from the eigenfunction 
solution. 

II. FORMULATION 

Consider a cylindrical conductor of arbitrary cross section 
immersed in a transverse time-harmonic magnetic field of 
flux density 0B . The material inside the body is characterized 
by a conductivity � and a permeability � , while the region 
outside is a free space.

The magnetic vector potential has only a component 
parallel to the conductor. Inside the conducting region D, it
satisfies a homogeneous Helmholtz equation, 

� � DAk ���� rr ,0)(22                              (1) 

where ��jk ��

2 , �  is the angular frequency, and r  is the 
position vector of the observation point. In the free-space 
region De , the quasistationary magnetic vector potential is 
decomposed as AAAe ��� 0 , where 0A  corresponds to the 
external field 0B  and A�  satisfies the Laplace equation  

                    ,0)(2
��� rA eD�r                        (2) 

The following continuity conditions across the interface S
between the conducting and the nonconducting regions are to 
be imposed: 

),()( rr eAA �      S�r                        (3) 
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with n�� /  denoting the normal derivative and 0�  the 
permeability of free space. 

In order to construct a single-source surface integral 
equation, we first assume to have everywhere conducting 
material identical with that in the region D and that the actual 
potential A in D is produced by a single layer of electric 
surface current parallel to the vector potential, of density sJ ,
distributed over the conductor surface, while the potential 
in eD is let undefined, i.e.  

sJA A�)(r , SD U�r                   (5) 

where the integral operator A  is given from 
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with  C  being the conductor cross-sectional contour, )2(
0H the 

Hankel function of second kind and zero order, rr ���R
and r � the position vector of the source point. The tangential 
component of the actual magnetic field intensity just inside 
the conductor surface is 

� � sst JJ
n
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where the integral operator H is defined from                               
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with the integral taken in principal value.  
On the other hand, the potential eA  in the region eD ,

outside the conductor, can be represented by applying the 
Green theorem. Assuming that the potential and the magnetic 
field vanish at infinity, 
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Taking into account (3), (4) and (7), the actual potential just 
outside the conductor surface S is 
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where I  is the identity operator and with the operators e
0A

and m
0A  acting as 
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 and the integral in (12) evaluated in principal value. 
Imposing the continuity condition in (3) and substituting 

tH from (7) and A  from (5) yields a single-source surface 
integral equation in sJ ,
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Once the unknown current density sJ is determined from 
(13), the magnetic vector potential in D and eD is obtained, 
respectively, from (5) and (9), i.e. 

                                ,)( sJA A�r D�r          (14) 
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III. NUMERICAL RESULTS 

The single-source surface integral equation has been 
implemented numerically for a circular cylindrical conductor 
by employing a point-matching method of moments. The 
cylinder cross-sectional contour was discretized into a 
number of about 60 straight segments, with a constant current 
density sJ  over each segment. In order to test the accuracy of  

the SSSIE solution, the induced eddy-current density was 
calculated for several frequencies and compared with the 
corresponding analytical solution. 

Numerical results shown in Fig.1 are for a cylinder of a 
conductivity S/m108.5 7

���  (copper) and a permeability 

0�� � , immersed in a uniform magnetic field of flux density 
B0 with a time–harmonic variation. The magnitude of the 
induced current density normalized to )(/ 00 crµB , where cr
is the cylinder radius, is plotted versus the distance r from the 
cylinder center along the direction perpendicular to the 
direction of the external field for various depths of 
penetration � .

Fig.1. Magnitude of the normalized induced current density versus the 
normalized distance from the cylinder center for various skin depths: 
� SSSIE ;  x  exact analytical solution. 

IV. CONCLUSIONS 

A single-source surface integral equation has been 
formulated for the analysis of eddy currents in cylindrical 
conductors, all the field quantities of interest being 
determined in terms of only one surface current distributed 
over the conductor boundary. It was tested for a conductor 
immersed in a transverse time-harmonic magnetic field. 

The computational accuracy of the SSSIE method has 
been demonstrated by comparison with the exact analytical 
solution for a large range of frequencies. 
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Abstract – Surface integral equations satisfied by the induced current 
density are formulated for axisymmetric solid conductors by applying 
the surface impedance model. Their performance is investigated 
employing prolate and oblate conducting spheroids with a large range of 
geometric parameters. Numerical results generated are compared with 
available analytical results and with experimental data. 

INTRODUCTION

 Boundary integral equations are used for solving 
approximately a wide range of electromagnetic field 
problems. They have the advantage of requiring less 
computation than methods based on the discretization of the 
entire conducting region. The perfect conductor model is 
commonly used in the formulation of surface integral 
equations for solid conductors, especially at high frequencies. 
The validity of this model has been analyzed in [1] for 
spheroids of various axial ratios by comparison with 
experimental results. 
 In this paper, we formulate surface integral equations for 
axisymmetric conductors in the presence of quasistationary 
magnetic fields using both the surface impedance and the 
perfect conductor models. These integral equations  are 
solved numerically for the  unknown surface current density 
by applying a point matching procedure [2]. Power losses and 
forces are derived from the induced current and computed 
results are compared with available measured data. The 
minimum number of necessary unknowns for a desired 
accuracy is determined for various prolate and oblate 
spheroidal conductors.  

INTEGRAL EQUATION FORMULATION

Consider an arbitrarily shaped axisymmetric good 
conductor, as depicted in Fig. 1, in the presence of a 
quasistationary magnetic field produced by coaxial turns 
carrying sinusoidal with time currents of same frequency. At 
sufficiently small depths of penetration, the electromagnetic 
field can be analyzed by determining the equivalent  surface 
current density Js which has an azimuthal -direction. An 
integral  equation  satisfied by  Js is  constructed  by imposing  

Fig. 1. Solid conductor in the presence of current- carrying turns. 

the condition that the tangential electric field intensity at the 
conductor surface S,
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Here, R = r – r � , with r and r � being the position vectors of 
the observation point and the source point, respectively, l �d  is 
the vector length element in the direction of the current along 
the respective inducing turn Ck, N is the total number of 
current-carrying turns, ut and u

�
 are unit vectors along the 
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generator curve C of the conductor and along the azimuthal 
direction ,  respectively, Ik is the  current  carried  by  the  k-th   
turn, and   Zs=Rs(1+j), with Rs=(��0 /(2�))1/2 and 1��j ,
� , µ0 and � being the angular frequency, the permeability and 
the conductivity of the conductor, respectively. The 
formulation for  the perfect conductor model is obtained by 
taking Zs=0.
 The surface integrals in (1) and (2) are taken in principal 
values and the singularities in the integrands are evaluated by 
considering separately the contributions   of each rectangular 
self-patch of dimensions hg � to the fields at its center, 
namely  
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and 

2
s

t
JH ���                                                                (5) 

NUMERICAL RESULTS AND CONCLUSION

 To illustrate the performance of the surface integral 
equation in (3), we consider an Aluminum(� = 3.77×107 S/m) 
prolate spheroid of major and minor semi-axes a0 and b0,
respectively, in the presence of three coaxial turns connected 
in series and carrying a current I0. The three turns are placed 
on the surface of a cone of opening 2 , as shown in Fig.1, the 
distance between the plane of the lower turn and the spheroid 
center being d1. Due to the axisymmetry of the system, the 
induced current density has a component only in the –
direction. The conductor surface is discretized into a number 
of M coaxial rings and their vector potential and magnetic 
field intensity are computed by employing Biot-Savart 
formulas. Each ring and each external current-carrying turn is 
divided into a number of elements to evaluate their vector 
potential and magnetic field intensity. The current density of 
each ring is considered to be constant and concentrated on the 
centerline of the ring, except wherever the source point 
coincides with the observation point, when the contributions 
in (4), (5) are used. The integral equation is finally reduced to 
a system of M linear equations with M unknowns, which are 
the current densities of the rings. The force acting upon the 
spheroid is evaluated by computing the force upon the 
inducing turns, which is the same in magnitude but opposite 
in direction. The accuracy of the numerical results for the 
forces and for the power loss in the conductor is increased to a 
desired level by increasing the number of elements on the 
conductor surface and by comparison with available 
analytical results and experimental data. The force 
normalized to µ0I0

2 for two frequencies and various geometric 

parameters is plotted in Figs. 2 and 3 as a function of d1/b1. A
good agreement with experimental data is achieved in the 
cases considered when using a number of about forty rings 
and one hundred elements on each ring. The improvement 
brought by the surface impedance model over the perfect 
conductor one, especially at smaller distances between the 
inducing turns and the induced body, is shown in Fig. 3. 

Fig. 2. Normalized force versus d1/b1 for an Aluminum conducting spheroid 
at 8 KHz, with N=3, tan =0.4, d/b1=0.25, b0/b1=0.5 and b0=2 cm: (I) 
b0/a0=0.6; (II) b0/a0=0.4.

Fig. 3. Normalized force versus d1/b1 for an Aluminum conducting spheroid   
at 2 KHz, with N=3, tan =0.4, d/b1=0.25, b0/b1=0.75, b0/a0=0.6 and b0=2 cm.
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The Weighted Wavelet-Based Multiresolution Time-Domain Analysis in the MOM
Solutions for Transient Eddy Current Problems
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Abstract ― A novel method of moments approach to the solutions of
time-domain integral-equation formulation of transient eddy current
problems is presented. The method is based on a time-domain
multiresolution analysis. The wavelets are biorthogonal with respect to a
weighted inner product and are used as basis functions in MoM
solutions. The TEAM becnchmark problem 4 is analyzed as a sample
problem to show the validity of the technique. The matrix obtained by
the proposed approach is rendered sparsely populated.

INTRODUCTION

The wavelet-based multiresolution analysis (MRA) has
been applied to many problems in Electromagnetics [1]-[3].
The matrix obtained by MRA is rendered sparsely populated.

In this paper, we take a novel approach to build a wavelet
system, referred to as the lifting scheme [4]. In this approach,
we use a new biorthogonal wavelet system as basis and
weighting functions in the method of moments (MoM) for
transient eddy current problems. The weight function in the
scalar product of basis functions speeds up the convergence
of the algorithm while preserving the sparse matrix structure.
The validity of the proposed technique is examined by using
the TEAM benchmark problem 4, the FELIX brick, and the
calculated results are compared with those obtained by using
other methods.

BASIC FORMULATION

Combining the definition of electric field E(r,t) and Ohm’s
law inside the conducting material we have:

 σ=φ∇−∂−∂= /t/ JAE .                      (1)
The magnetic vector potential A can be expressed as:
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FOUNDATION OF WAVELET AND WEIGHTED
MULTIRESOLUTION ANALYSIS

The basic formulation of wavelet theory for electric and
magnetic field computations can be fund in [1]. The
weighted multiresolution analysis technique was fully
described in [5] and will be briefly outlined in the full paper.

NUMERICAL SAMPLE AND RESULTS

The TEAM benchmark problem 4, 3D transient eddy
currents in a rectangular aluminum brick with a hole shown in
Fig. 1, is analyzed. The brick is 0.1524mx0.1016mx0.0508m.
A rectangular hole 0.0889mx0.0381m penetrates the brick
through the centers of the large faces. The applied magnetic
field is uniform and decays exponentially with time as
follows:

          Bz = 0.1 exp (-t /0.0119).
The resistivity of aluminum ρ=3.94x10-8Ωm. Due to the

symmetry, the solution region is the 1/8 brick shown in Fig.2.
Fig. 3 and Fig. 4 show the good agreement between the

calculated results obtained with the proposed weighted MRA
and FEM.
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Fig. 1 The geometry of FELIX brick.

Fig. 2 The solution region: the 1/8 of the brick.

Fig. 3 Total circulating current vs. time.

Fig. 4 Joule heating rate vs. time.
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Abstract — In this paper, an efficient method for the 3-D computation 
of steady-state skin effect problem in current-carrying conductors is 
presented. It is assumed that the total current is composed of the 
source current and eddy current and source current density is 
proportional to the electric field intensity. To calculate the source 
current density, the iterative procedure is employed. The proposed 
method can be easily implemented in the existing 3-D finite element 
code with slight modification. The proposed method is validated by 
comparison to known solutions of slot-embedded model and applied 
to the analysis of current distribution in vacuum interrupter. 

INTRODUCTION

If the skin depth of current-carrying conductor in AC 
system is shorter than the thickness of conductor, the 
current density is higher towards the surface of conductor. 
To find the dynamic impedance of such system, the current 
distribution in the conductor should be known accurately. 
General approach to calculate the current distribution starts 
from the assumption that the total current is composed of 
the source current and eddy current. For 2-D case, smart 
formulations for finite element analysis of skin effect 
problem were proposed [1,2,3]. However, for 3-D case the 
number of unknowns increases dramatically and the 
discretization procedure is complicated compared with 2-D 
case.  

This paper presents the efficient iterative method for 
computing the current distribution in the harmonic current-
carrying conductors with 3-D finite element method. Main 
idea of the method is that the source current density is 
proportional to the pre-calculated electric field intensity. 
The additional variable for the source current density is the 
proportional coefficient which is constant in each 
conductor. The method is applied to the simple validation 
problem to check the accuracy and efficiency. 

GOVERNING EQUATIONS

For 3-D quasi-stationary eddy current problems, the 
governing equation and current composition equation are 
expressed as followings : 

tJA
��

����� �         (1) 

set JJJ
���

��  = ��� ��� Ajw
�

       (2) 

where A
�

 is magnetic vector potential, tJ
�

 total current 

density, sJ
�

 source current density, eJ
�

 eddy current 
density, � electric scalar potential. 

The source current density could be calculated if the 
potential difference between the two end sides of conductor 
is known. However, the only measurable known quantity is 
the total current Jt. The source current density can be 
expressed as (3) under the condition that the electric 
conductivity in a conductor is constant. 

sJ
�

= ����  = e
�

�         (3) 
where e

�

is the electric field intensity within the conductor 
when the potential difference is 1[V] and � is the 
coefficient which is constant for one conductor. 
From (3), (1) is rewritten as (4). 

A
�

���� � = eAjw
�

�

�� ��        (4) 

To find the unknown variable � , following equation is used. 

�� ������ ScSc tt SdeAjwSdJI
�

�

���

)( ��       (5) 
where tI [A] is the known total current and Sc is the cross 
section of a conductor. 

The final equations to be solved are (4) and (5) with the 
boundary conditions and total current condition. If (1) and 
(2) are used as the governing equations, the unknown 
variables increase considerably compared to the pure 
harmonic magnetic field problem because of the addition 
of � in each finite element located in the conductor. 
However if (4) and (5) are used, the unknown variable� is 
added just by one for one conductor. Therefore the 
computational cost of proposed method can be reduced 
fairly compared to solving the full equations of (1) and (2). 

ITERATIVE PROCEDURE

The simultaneous system matrix obtained from the finite 
element discretization of (4) and (5) by Galerkin method is 
non-symmetric because the unknown variable � is only 
related to the elements contained in Sc and general 
symmetric algorithm of finite element method can not be 
used. To overcome the problem and reduce the 
computational cost, the iterative method is proposed. Fig. 1 
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shows the flow chart for iterative calculation. First, the 
electric field intensity is computed with the potential 
difference of 1[V] for each conductor. Then equation (4) is 
solved with assumed value of � . The new value of � for 
each conductor is then calculated from (5). The 
computation time of (5) is ignorable. If e

�

�  of (4) is 
known, then solving (4) by FEM is the common A-method 
for 3-D harmonic eddy current problem. The 
implementation of A-method is easy compared to ��A
formulation [4] in solving 3-D eddy current problems. By 
the iteration process, the converged value of vector 
potential A and coefficient � can be obtained. In 
updating� , under-relaxation method is used. 

Fig.1. Analysis procedure for proposed method. 

NUMERICAL EXAMPLES

The proposed method is applied to the slot-embedded 
conductor model for the validation. The 3-D model for the 
analysis is shown in Fig. 2(a) and the current flows along 
the z-direction. In this case, the number of conductor is one 
and only one � is added as the unknown variable. To verify 
the method, simulation results are compared with the 
results obtained from the 2-D integro-differential method 
[2]. Fig. 2(b) shows the flux distribution and Fig. 3 shows 
the comparison of the real part of source current density 
according to the frequency. As shown in the figure, good 
agreement can be achieved. If the frequency is low, then 
converged solution can be obtained within a few iterations. 
However, it is found that the higher the frequency is, the 
more iteration steps are required. Another analyzed model 
is the vacuum interrupter used for circuit breakers. The 
magnetic field in the interrupter is very important for 
extinguishing the vacuum arc. To compute the magnetic 
field accurately, the current distribution within the current 
path should be calculated precisely [5]. Fig. 4(a) shows the 
analyzed vacuum interrupter model. The current is 20[kA] 
and frequency is 60[Hz]. Fig. 4(b) shows the distribution of 
real part of the current on the contact surface. The pattern 
of the expected current flow was obtained. More analysis 
results for other models and the efficiency of the method 
will be shown in the full paper. 

(a) 3-D model           (b) Flux distribution (f=60[Hz]) 
Fig.2. Analysis of slot-embedded conductor. 

Fig.3. Comparison of the real part of the source current density  
for slot-embedded problem. 

(a) 3-D model of interrupting part  (b) Current distribution (real part) 
Fig. 4. Analysis of current distribution in the vacuum interrupter. 

CONCLUSIONS

In this paper, the efficient iterative method for the 
calculation of 3-D skin effect problem in current-carrying 
conductor is presented. The method requires less 
computational cost than the direct solution of full equations 
and easy to implement.
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Algebraic MultiGrid Preconditioner for Harmonic Eddy Current
Problems in 3D
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Abstract— The focus of this paper is on the ef-

ficient solution - both in CPU time and memory -

for harmonic eddy current problems in 3D. The mag-

netic vector potential is used as the field variable and

Nédélec (edge) finite elements are used for the space

discretization. The resulting system of equations is

solved by applying a Quasi Minimal Residual solver

with an appropriate Algebraic MultiGrid (AMG) pre-

conditioner.

I. Formulations

Restricting Maxwell’s equations to the problem class of
quasi-static (eddy current) electromagnetic fields yields
for the magnetic vector potential A

γ
∂A
∂t

+ ∇× ν∇× A = Ji (1)

with boundary condition n × A = 0 and n the unit out-
ward normal vector. In (1) Ji denotes the impressed cur-
rent density, ν the magnetic reluctivity and γ the elec-
tric conductivity. Furtheron, the following interface con-
ditions have to be fulfilled

[A × n] = 0 ; [ν n ×∇× A] = 0 ;
[
γ

∂A
∂t

]
= 0 (2)

with [Z] = Zright−Zleft. For further discussions let Ω be a
bounded single connected convex domain with boundary
∂Ω = Γ. In the harmonic case the time derivative of the
magnetic vector potential is substituted by

∂A
∂t

→ jωÂ

with j the complex number, ω the angular frequency and
Â the complex magnetic vector potential.

The function spaces L2(Ω) and H1
0 (Ω) are defined as

usual, see e.g. [1]. Therewith, the variational formulation
for (1) in the function space

H0(curl) = {u ∈ (L2(Ω))3 | ∇ × u ∈ (L2(Ω))3,
u × n|Γ = 0} (3)

reads as follows: Find Â ∈ H0(curl) such that
∫
Ω

jωγÂ′ · Â dΩ +
∫
Ω

∇× Â′ · ν ∇× Â dΩ

=
∫
Ω

Â′ · Ji dΩ (4)

for any Â′ ∈ H0(curl) is fulfilled.

The edge finite elements approximate the magnetic vec-
tor potential Â by

Â ≈
Nh∑
k=1

ÂkNk . (5)

In (5) Nh defines the number of edges in the finite element
mesh, Nk the edge shape function associated with edge
ek, and Âk the corresponding degree of freedom, namely
the line integral of the magnetic vector potential along ek

Âk =
∫
ek

Â · ds . (6)

Therewith, the spatial discretization of (4) leads to an
algebraic system of equations

KhÂh = f
h

(7)

with the complex system matrix Kh.
At this point we want to emphasis, that an edge FE-

discretization of (4) is H0(curl)-conform [6]. However,
the solution of the algebraic system requires special care
in order to obtain an optimal MultiGrid solver (see e.g.
[2], [4]). We suggest to add a fictive electric conductivity
γ′ to regions with zero electric conductivity to obtain a
variational form, which is elliptic [10]. Of course, this fic-
tive conductivity γ′ has to be chosen small as compared to
the reluctivity of the material. The proof of convergence
even in the case of γ′ → 0 is given in [8].

A. Algebraic MultiGrid

We have to apply the AMG method to a complex val-
ued and symmetric algebraic system of equations (see (7))
with system matrix

Kh = Kre
h + jKim

h . (8)

In (8) Kre
h denotes the real part and Kim

h the complex
part of the system matrix.

AMG methods are very similar to geometric MG meth-
ods, but are based on the information available on a given
single grid (for the pioneer work on AMG see [9]). There-
with, the main components of an AMG algorithm are as
follows [5]:

• Coarsening Process

• Construction of coarse FE-spaces

• Smoothing
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Coarsening Process: The first task within an AMG
solver is to perform the coarsening process to extract from
the given system matrix Kh matrices with decreasing di-
mensions. The complexity of this task is, that an appro-
priate and fast coarsening can just be guaranteed, if Kh

is an M-matrix. Since in general this is not the case, we
construct an auxiliary matrix Bh on which the coarsen-
ing is performed. We define Bh to be real valued, and
construct it FE-element wise by [7]

Bh,ij =
{

bij ≤ 0 if i �= j,
1 − ∑

j �=i bij ≥ 0 if i = j .
(9)

br
ij = − νr

‖aij‖2
i �= j and (i, j) ∈ ωe

h . (10)

In (10) νr denotes the reluctivity of element r, ‖aij‖2 the
length of the geometric edge vector defined by the nodes
i and j and ωe

h the set of edges within the FE-mesh. Now
the coarsening is performed on Bh, e.g. as described in
[7].

Construction of coarse FE-spaces: For the con-
struction of a coarse grid operator KH we define the sys-
tem prolongation operator Ph to be real valued. There-
with, we obtain

KH = PT
h KhPh = PT

h Kre
h Ph+jPT

h Kim
h Ph = Kre

H +jKim
H .

Smoothing operator: In the case of an algebraic sys-
tem of equations arising from the edge FE-discretization
we apply the complex version of the smoother proposed
by D. Arnold, R. Falk and R. Winther in [2].

B. Results

We present results of 3D magnetic field computations
for an electric transformer as shown in Fig. 1. The arising

Fig. 1. FE-mesh of an electric transformer (no air region is dis-
played)

algebraic system of equations have been solved by a Quasi
Minimal Residual method (see e.g. [3]) with the presented
AMG as preconditioner. For the stopping criteria of the
iterative solver we used

‖f
h
− KhÂh‖2 ≤ 10−6 ‖f

h
‖2 .

All computations have been performed on a PC Pentium
1.7 GHz. In Tab. I the required memory, number of iter-
ations and the CPU-times can be found.

Nh MB Iter Setup [s] Solver [s]
4.786 9 19 0.1 1.5
37.390 72 30 1.1 22.5
296.064 580 51 9.6 319

TABLE I

Electric Transformer: Performance for different FE-meshes

II. Outlook

In the full paper, we will give a detailed discussion on
all components of the presented AMG method as well as
detailed numerical studies of different problem cases.
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Abstract—The FEM computation of eddy current losses in transform-
ers (specially in the conductor winding) at high frequencies remains un-
realistic with standard material models (huge meshes). However, this dif-
ficulty can be overcome by using the complex permeability concept. So,
3D FEM magnetodynamic simulations (Flux3D) with anisotropic com-
plex permeability applied to coil give accurate results for proximity effects
losses. These 3D simulations have been done with the magnetic scalar po-
tential formulation (T0-φ) using the complex permeability to overcome the
problem of the huge mesh.

INTRODUCTION

To predict Very Fast Overvoltage Transcients in transformer
windings we have to be able to compute the eddy currents in the
conductors. The FEM eddy currents losses computation at high
frequencies is unfortunately unrealistic in the case of industrial
wounded equipments (transformer, rotating machine...). As a
matter of fact, taking into account properly the skin depth at
high frequencies (from kHz up to several MHz) would involve
huge meshes due to 2 finite elements in the skin depth (0.1 mm
at 150 kHz). For proximity effects accounting (skin effect can
be analytically post-processed [1]), this difficulty can be over-
come by using the complex permeability concept which con-
sists in substituting a non conductive ferromagnetic material
(featuring an elliptical loop described with a complex perme-
ability) in place of a conductive material, based on active and
reactive power equivalency. Complex permeability method ap-
plied to 2D problems have shown a very good accurancy in the
loss approximation and made possible an important reduction
of the mesh size. The present work deals with the 3D extension
of the method and specially with the magnetic scalar potential
formulation [2].

DEFINITION OF THE 3D COMPLEX PERMEABILITY

Dealing with a rectangular unsupplied conductor and applying
the superposition principle (linear materials), the assumption of
a localy uniform external magnetic field source enables to de-
fine an anisotropic complex permeability with respect to the x,
y and z axis [3]. The complex permeability x and y components
derive from the analytical calculation of the magnetic field in
an infinite conductive plate submitted to a homogeneous har-
monic field. Whereas the third component calculation assumes

µ σ(   ,   )

µ σ(   ,   ) (   ,   )µ σ

µ σ(   ,   )

µ(    )∗

H ext
H ext

Fig. 1. a bundles of conductor, homogeneization

that the third dimension is much larger than the planar dimen-
sions considering the field along the z axis. In addition, since a
coil may be constitued of several turns wrapped with insulation
(Fig. 1), a homogeneization based on reluctance considerations
has been applied to set one complex anisotropic permeability
for a chosen conductive area.

MAGNETIC SCALAR POTENTIAL FORMULATION

Up to now, the transformer simulations have to take into ac-
count several physical domains: insulator, conductors and fer-
romagnetic materials.
In our approach the conductors have for unique physical prop-

Fig. 2. Typical physical problem which implies two conductors set.

erty, the complex permability, and so the simulation space is
compound of three distinct regions (Fig. 2):

• Ω0: insulator region, the air,
• Ωc: “conductor” region (µ∗),
• Ω2: ferromagnetic region.
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For that we use the magnetic scalar total and reduced potential
formulation derived from the Maxwell’s equations:

−→∇ .
−→
B = 0 and

−→∇ ×−→
H = J (1)

In Ω1 = Ω0 ∪ Ωc, we use the reduced scalar potential:

−→
H =

−→
T0 −−→∇φ in Ω1 (2)

−→
T0 ×−→n = 0 on Γ12 = Ω1 ∩ Ω2 (3)

where T0 is deduced from
−→∇ ×−→

T0 =
−→
J [4].

In Ω2, we use the total magnetic scalar potential. This requires
the introduction of a cut to insure the Ampere’s theorem (to
overcome the problem of connexity). On the cut,in Ω2, the
scalar potential jump verifies the relation:

δφtotal = I surrounded current the coil[2] (4)

For a network simulation [5] the transformer has to be caracter-
ized by their electrical parameters R, L, C and G. That’s why,
by post-processing, we recover the currents and voltages of the
coils (conductors set). The current-voltage relation is given by
the following expression [6]:

Uk = RkIk +
∫

Ω1

−→
t0k.

−→
B.dΩ (5)

−→
t0k is the unitary

−→
T0 calculated for the kth coil supplied at 1A

from that is following the expression of the voltage:

Uk = RkIk +
∫

Ω1

−→
t0k.

∂

∂t

[
µ

(∑
l

Il
−→
t0l −−→∇φ

)]
.dΩ (6)

With µ = µ0 in air and µ = µ∗ in the “conductor” (Ωc).
The alliance between the complex permeability concept and
the magnetic scalar potential formulation has been validated
by comparison with the standard case, where we take into ac-
count a massive conductors (µ,σ). For that we use the T −T0φ
formulation, which takes into account the eddy currents by:

−→∇ ×−→
E = −∂

−→
B

∂t
(7)

And we have the potential definition:
−→
H =

−→
T +

−→
T0 − −→∇φ.

The validation is based on the resistance called of “proximity”,
they are mainly due to the induced effects.

VALIDATION - 3D TEST-CASES

In a previous work we have validated the anisotropic µ∗ con-
cept on a single conductor in an external magnetic field [3].
Now, we are focus on 3D of R and L computation on a two
conductors set (shown in Fig. 3) using µ∗ concept incorporate

in 3D formulation. This validation is based on the calculation
of the terms of the (R) and (L) matrix, by comparison between
the (µ,σ) and the (µ∗) numerical simulations without ferromag-
netic core to compare to the 2D axi simulation. The coil geom-
etry (shown in Fig. 3) implies a local complex permeability
tensor regard to each node. R and L are deduced from U and I
variables provided by Flux3D post-processing.
Considering that the actual configuration (2 conductors set) is

(a) (b)

Fig. 3. Geometry and mesh density for (a) the (µ,σ), (130000 nodes) and (b)
the (µ∗), (28900 nodes). Notice that in the case of (µ,σ) we have to increase
the mesh density with respect to the frequency.

unfavourable since H is not uniform around the coil, the results
are encouraging (see Table I) at the view of the error on the R
diagonal elements which is less than 7%. Then, dealing with
much more conductors, results will be better. Similar results
have been obtained in presence of ferromagnetic core.

F(Hz) (µ,σ) axi 3D (µ,σ) 3D (µ∗)
3000 (R) ×e−4 3.26 3.25 3.41
5000 (R) ×e−4 3.46 3.45 3.68

Table I: Diagonal elements of the R matrice.

CONCLUSION AND PROSPECTS

The substitution by the 3D complex magnetic permeability is
validated for the computation of the losses and for the de-
termination of the R and L parameters on simple test-cases
(two conductors set). Integration of the complex permeabil-
ity in cases nearer of real electrical devices like transformer,
multi-conductors set cases with ferromagnetic core, is now in
progress.
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Abstract –A forced flow experiment is proposed for validation of the 

numerical simulation of eddy current in iron structures. The eddy 

current is forcedly flowed in a short sample bar with a round 

cross-section by the alternating current source. Because the source 

impedance is comparable to the sample load, not only the current but 

the voltage wave are distorted. Therefore the current and voltage waves 

are compared with the simulated waves, and the tests are in good 

agreement with the simulation. The simulated loss-density is in good 

agreement with the tested. However the phase angle is considerably 

larger than the tested. This may be based on ignoring hysteresis. It is 

concluded that this evaluating experiment is applicable to the 

validation.

Introduction 

As high speed CPU and large memory are popular now, we 
can daily use 3D finite element methods for determining the 
magnetic field with eddy current in solid iron structures. And 
those are usually numerical simulation using explicit 
finite–difference for time varying term. Those methods are 
useful, but it must be validated by using experiments. 

Test Method 

   Test specimens of ring iron were used in most of 
presented papers such as [1]. The rings were excited with 
sinusoidal current forced in the exciting coil. Lim and 
Hammond used rectangular steel blocks with laminated iron 
yokes[2]. The magnetic circuit was excited by sinusoidal 
voltage source which was maintained by feedback 
techniques. The author proposes a forced flow test method 
where the specimen is short sample bar with round 
cross-section and the eddy-current is forced by a current 
source as shown in Fig. 1. If the rectangular cross-section is  

Fig. 1 Test method

used, the edge effect of iron bar may be checked. The 
specimen can be made easily. The coaxial return bus is 
necessary for uniform boundary condition over the surface 
of specimen. Test specimen is SS400 iron bars annealed in 
vacuum chamber and the conductivity is 5.3E6 S/m. The 
diameter is 8mm, and the length about 400mm. The ring 
specimen for measuring BH curve and the short sample for 
testing eddy-current are cut out from an iron rod with 80 mm 
diameter. 

The distortion of current and voltage waves may give 
an important problem in this method, because the specimen 
is so short that its load impedance is comparable of current 
source. The author, however, has discovered that the 
distortion of excitation current or voltage is not an important 
matter. This fact is mentioned below. 

Simulation Method 

A popular simulation method is used, where 3D edge 
element A-phi method [3] is 2-dimensionally applied to a 
quarter of bar cross-section. The time step is 1/64 per  a 
cycle, 10 cycles are calculated and the last 1 cycle is treated 
as a result.  Hysteresis is neglected and the initial exciting 
BH curve is used.

SPECIMEN

COAXIAL RETURN
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Comparison Between Test and Simulation

   Fig. 2 shows the loss density at 60 Hz . The curve CALC 
is the simulation where the impedance of the source is taken 
into consideration. The curves Sin_E and Sin_H correspond 
to the sinusoidal electric and the sinusoidal magnetic fields, 
respectively. These simulation results are almost on the same 
curve and somewhat larger than of the test.  This is an 
important result. This figure shows the fact that the 
distortion is not a matter of discuss. In passing the results of 
references[1] and [2] are on this TEST line. This fact has 
never been pointed out. 

The field is the smaller, the test results are the larger 
than the simulation. This must be caused by neglecting 
hysteresis in the simulation. 

Fig. 3 and 4 show the surface impedance defined by the 
surface fields; E/H. The test result of phase angle is much 
less than the simulation results. The distortion dose not 
affected these simulation results also. This fact is remarkable.  
Neglecting hysteresis in the simulation is a reason of these 
results. 

When the measured distortion factors of the current and 
the voltage waves are compared with the CALC results, it 
can be concluded that the wave forms are similar to the 
measured. 

Conclusions 

(1) The proposed experimental method for validation of the 
simulation of eddy-current may gives reasonable results. 

(2) The distortion of electric voltage and current waves is 
not essential in the experiment for the validation. 

(3) The simulation for eddy-current in iron gives good 
results about loss value, but the simulated result of 
phase angle is much larger than of the test. 
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Fig. 2  Loss density 

Fig. 3  Surface impedance 

Fig 4. Phase angle 
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Abstract – An efficient FEM-based approach for the solution of 2-
D proximity effect transient problems is presented. Both computer
execution times and memory storage requirements can be
consistently reduced by employing a suitable formulation leading
to a sparse linear system of equations with a (slightly) higher 
dimensionality with respect to the corresponding much more dense 
system resulting from the standard formulation.

I. INTRODUCTION

Different formulations have been proposed in the
literature in order to study proximity effect problems [1-
2]. In this paper the method presented in [3] is
generalized in order to study current-driven proximity
problems and an efficient approach for the solution of 
the FEM formulation of the problem is also provided.

II. FORMULATION

Consider N adjacent, infinite (along z), homogeneous
and linear conductors ck (k=1,2,..,N), with permeability

= 0 and conductivity , carrying currents ik(t),
surrounded by an unbounded nonconducting domain n

of permeability 0. Since we consider currents ik(t)
directed along the z-axis, the electric field E and the
current density J are z-directed while the flux density B
lies in the x-y plane. On the basis of such considerations,
the magnetoquasistatic approximation of Maxwell
equations after a discretization based on the backward 
Euler method, leads to:

nin0A

N)1,...,(kin
S

dSAµ
AµA

z
2

ck
ck

S
z0

z
0z

2 ck tf
t

t

t
t

k

(1)

where Sck is the cross section of conductor k, and

S

dSAµ
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ck

t

tt

t
tt

tf k
. The FEM 

solution of eq. (1) is based on the construction of a 
triangular mesh with nt triangles and nn nodes (nn=nD+np

where nD is the number of Dirichlet points placed on 
and np is the number of mesh nodes where Az is 
unknown) and on the choice of a test-function space [4]. 
There are many choices for the test-function spaces; we
have used continuous functions that are linear on each
triangle of the mesh. A suitable basis for such function
space is the set of functions vi which are linear on each 
triangle of the mesh and take the value 0 at all nodes 
except node i where they are equal to one. By labeling
with An the column vector of the unknown nodal values
of Az, a FEM variational formulation of (1) would lead
to the following linear system of equations [4]:

FDAMK n
   (2) 

where K and M are np-by-np matrices and D and F are 
np-vectors defined as it follows:

;vvji,M;vvji,K
cR

ji
0

ji d
t

d
(2.1)

;viF;
S

dSA
viD

,1
i

,1 ck

z

i
0

ckck

ck

Nk
k

Nk
dfd

t

   (2.2)

The integrals in (2) can be computed by using the mid-
point rule; this approximation is optimal since it has the
same order of accuracy of the piecewise linear 
interpolation. On the basis of such consideration, D(i)
can be rewritten as: 

;
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where nk is the number of mesh triangles in ck, ckm

represents the m-th mesh triangle belonging to ck,
Sckm.and Pkm are respectively the area and the center of
mass (barycenter) of ckm, xkml and ykml (l=1, 2, 3) are 
the coordinates of the three nodes of ckm, xkm and ykm
are the coordinates of Pkm (

3
y

y,
3

x
3,1

kml
km

3,1

kml
km

ll

nCAD

x
), ml

(l=1, 2, 3) are the indices of the nodes of ckm and 
An(ml) are the values assumed by Az in such nodes. 
Therefore vector D can be written as:  where C
is a np-by-np matrix; the entries C(i, ml) (i=1,...,np; l=1, 2,
3) are given by the coefficients of An(ml) in eq. (3). 
System (2) can thus be rewritten as : 

FHAACMK nn
   (4) 

The chosen basis function vi vanishes on all the triangles
that do not contain the node i; therefore K(i,j) and M(i,j)
are zero unless nodes i and j are vertices of the same
triangle. Thus K and M are very sparse matrices, instead 
C, and consequently H, is much more dense since, when 
i and j are nodes belonging to the same conducting
region ck then entry C(i, j) is different from zero even if 
i and j are not vertices of the same triangle. Due to the
dense nature of H the solution of (4) is very onerous in
terms of execution times and memory storage
requirements. A more efficient approach to take into
account the integral term in the left-hand side of the first
of eqs. (1) is the following. Eq. (1) can be rewritten as: 
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t            (5.1) 

Aak(t) (k=1,...,N) represents the spatial average value of
the magnetic vector potential Az on Sck. In place of an 
unknown np-vector An, in the following it will be
considered a fictitious unknown (np+N)-vector An’ such 
that the first np components of An’ coincide with the
corresponding components of An, while the further N 
components of An’ represents the N average values Aak
collected in the N-vector Aa. The variational formulation
of (5) coupled with the set of N linear equations
expressing the dependence of Aak on An leads to:
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Bn, Ba, Gn and Ga are defined as it follows:
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The entries Gn(k, ml) (k=1, 2,…, N; l=1, 2, 3) of Gn are 
given by the coefficients of An(ml) in eq. (7) that 
describes, with the usual meaning of symbols, the
dependence existing among Aak and An:
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It is worth noting that, thanks to the very sparse nature of 
K and M, Bn which is by far the largest of the four
submatrices of H’ is a very sparse matrix. Instead 
matrices Ba and Gn are more dense but they are very 
small (as long as np>>N) with respect to the overall size 
of H’. Therefore H’ is a very sparse matrix too so that it 
is far less expensive to solve system (6) rather than
system (4). 

III. RESULTS AND DISCUSSION

We will refer to the case of two adjacent conductors 
(N=2) of rectangular cross section (0.1 mm 10 mm),
conductivity =5.8*10+7 S/m, placed at a distance d=1 
mm. As an example, the analysis has been carried out by
using the periodic current waveform ct typical in dc-dc 
converters (Table 1). The duty-ratio D indicates the
interval during which i(t) 0, normalized with respect to
the period T=1/f. In figs. 1 the spatial distributions of the
r.m.s. volume current densities, at steady state, are 
shown for currents flowing in the same direction
(i1(t)=i2(t)=ct(t)) and in opposite directions (i1(t)=-i2(t)
=ct(t)) respectively. The simulations have been carried 
out in MATLAB  environment by exploiting its built-in
computational linear algebra on sparse matrices. The 
adopted mesh is characterized by the following
parameters: nt=6206, nn=3138, nD=68, np=3070; the

memory requirements to store H and H’ as MATLAB 
sparse matrices are equal to 28295 kB for H and to 363 
kB for H’. It is evident the considerable saving of
computer memory which can be obtained by using
formulation (6). The sparsity ratios q (the ratio between
the number nz of nonzero elements and the total number
of entries) of H and H’ are respectively q(H)=0.245 and 
q(H’)=0.0027. In spite of its higher dimensionality (3072 
instead of 3070), the very sparse system (6) can be
solved in a much more computationally efficient way 
than system (4). The execution times needed by 
MATLAB  to solve the linear sparse systems of
equations (6) and (4) on an Intel Pentium III at 1 GHz
are equal to 20.4 and 0.9 s respectively.

Table 1 
current Shape D f [kHz] Imax [A]

ct 0.3 200 1

(a)    (b)
Fig. 1: r.m.s. volume current densities at steady state: (a)
i1(t)=i2(t)=ct(t); (b) i1(t)=-i2(t)=ct(t)

(a)   (b)
Fig. 2: sparsity patterns: (a) H, (b) H’

IV. CONCLUSIONS

In spite of the (slightly) higher dimensionality of system
(6) (np+N unknowns) with respect to that of system (4) 
(np unknowns), since np>>N, it is possible to exploit
advantageously the lower computational complexity
required by arithmetic operations on very sparse matrices
with respect to that one required by the corresponding
operations on more dense matrices.
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Simulation of a three-phase transformer using an improved anisotropy model

H. Vande Sande1, T. Boonen2, I. Podoleanu1, F. Henrotte1 and K. Hameyer1

1 Katholieke Universiteit Leuven, Dept. ESAT, Div. ELECTA, Kasteelpark Arenberg 10
2 Katholieke Universiteit Leuven, Dept. Computer Science, Celestijnenlaan 200A

B-3001 Heverlee-Leuven, Belgium
Email: hans.vandesande@esat.kuleuven.ac.be

Abstract— The numerical modelling of electromagnetic devices
with non-linear and anisotropic materials requires the knowledge
of the reluctivity tensor. Its entries generally depend both on
the magnitude and the direction of the flux density. They can
be obtained from measurements with a single sheet tester by
considering an improved anisotropy model. The paper discusses
how this model can be integrated in the finite element method. It
is succesfully applied for simulating a three-phase transformer.

I. INTRODUCTION

NON-LINEAR magnetostatic systems are described by the
equation

���� �� ������ � � � (1)

where � is the vector potential [Vs/m], � the reluctivity
[Am/Vs] and � the applied current density vector [A/m�]. The
reluctivity is represented by a symmetric second-rank tensor.
It relates the flux density � [Vs/m�] to the field strength �

[A/m] according to � � ��. In its principal coordinate system
�PQ�, all off-diagonal entries are zero. In order to obtain the
tensor in the global coordinate system �XY�, the following
transformation rule is used [1]:�

��� ���
��� ���

�
� ���

�
�� �
� ��

�
� � (2)

with

� �

�
�	
� 
���
� 
��� �	
�

�
(3)

the matrix of direction cosines and � the angle between
the X-axis and the P-axis. In the general case of non-linear
anisotropic materials, the diagonal entries are not equal and
depend on the magnitude and the direction of �. This be-
haviour can be analyzed by the improved anisotropy model
presented in [2]. This paper shows how this hybrid model can
be integrated in the finite element method. It is demonstrated
for the simulation of a three-phase transformer.

II. IMPROVED ANISOTROPY MODEL

Silicon steels that are widely used in transformers exhibit
a considerable non-linear anisotropy, originating from their
Goss-texture [3], [4]. Physical considerations and measure-
ments show that � and � are aligned if the applied field is
directed along the rolling direction (RD) or transverse direc-
tion (TD). Hence, these directions are the principal axes of the

� [T]
�Æ�

��� [��� Am/Vs]

� [T]
�Æ�

��� [��� Am/Vs]
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Fig. 1. The tensor reluctivity components of a Goss-textured ferromagnetic
material as a function of the magnitude and the direction of �.

reluctivity tensor. By combining the laws of ferromagnetism
with measurements from a single sheet tester, it is possible to
determine the reluctivity in the RD (���) and TD (���), as a
function of the magnitude of � and the angle � it makes
with the RD [2]. Their shape is plotted in Fig. 1. These
characteristics reveal that the hardest magnetization occurs for
a certain angle between �Æ and ��Æ (Theoretically at ��	�Æ).
At lower flux density levels, this improved anisotropy model
yields an area in the � � � plane in which ��� and ���
are undefined. The corresponding �-vectors are never reached
during the measurements because � tends to stay close to
the RD or TD. As the finite element method may require
to evaluate the reluctivity in this area, it is supposed that
������ ��

Æ� and ������ �
Æ� equal the reluctivity of air, and

that the reluctivity components increase linearly towards this
value over the empty region.

III. NON-LINEAR COMPUTATION

Convergence is not easily achieved when simulating devices
with non-linear anisotropic material characterisitics such as
the ones presented in Fig. 1. Several simulations have shown
that reliable solutions are obtained by applying a fixed-point
iteration (successive substitution), in which the reluctivity
tensor is initialized as linear isotropic

��� � ��� � �	�
���� � (4)
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1
2

Fig. 2. The mesh and a field solution, for a particular instant of time, obtained
by applying the improved anisotropy model. The RD is indicated by lines in
the ferromagnetic parts.

followed by a smooth transformation into non-linear isotropic

��� � ��� � ������ (5)

and eventually into non-linear anisotropic.

��� � ������� �� ��� � ������� �� (6)

For the applied finite element analysis, the mathematical
software libraries PETSc (Portable Extensible Toolkit for
Scientific Computing) and TAO (Toolkit for Advanced Op-
timization) have been used [5], [6].

IV. EXAMPLE

The hybrid model is used for simulating the three-phase
transformer of Fig. 2. Obviously, the bending of the flux
lines is located close to the joints. This is not observed with
isotropic materials. In order to demonstrate the improvement
which can be achieved, when compared to anisotropy models
of the type

��� � ������� ��� � ������� (7)

as e.g. discussed in [7], the �-loci in points 1 and 2 of Fig. 2
are plotted in Fig. 3. The applied current varies sinusoidally
over one period. For a fair comparison, ������� �Æ� and
������� ��Æ� of Fig. 1 have been used. The smooth loci
obtained with the latter model are in contrast with the com-
plicated loci of the improved anisotropy model. Both models
show a preferred orientation of the flux density in the rolling
direction. However, the improved model additionally accounts
for the more difficult magnetization along the hard axis of the
material (� � ����Æ). Similar �-loci have been measured and
presented in [8].

V. CONCLUSIONS

Anisotropy of magnetic materials can be implemented in
numerical simulations by means of a reluctivity tensor. Its
diagonal entries generally depend on both the magnitude and

�� [T]

�
�

[T
]

�� [T]

�
�

[T
]

-1.5 0 1.5-1.5 0 1.5
-1.5

0

1.5

-1.5

0

1.5

Fig. 3. The �-loci obtained by applying an improved (solid) and a traditional
(dashdot) anisotropy model, at points 1 (left) and 2 (right) indicated in Fig. 2.

the direction of the flux density. This dependency can be
obtained from an improved anisotropy model. However, the
shape of the resulting reluctivity surfaces impedes the conver-
gence of the numerical simulation method. Therefore, a fixed-
point method, which gradually increases the non-linearity and
the anisotropy, is adopted. By the simulation of a three-phase
transformer it is shown that the improved anisotropy model
yields a solution which better corresponds with the physical
phenomenon, compared to the solution obtained by applying
an anisotropy model which ignores the angle dependency of
the tensor entries.
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users manual,” Tech. Rep. ANL/MCS-TM-242, Mathematics and
Computer Science Division, Argonne National Laboratory, 2002, See
http://www.mcs.anl.gov/tao.

[7] P.P. Silvester and R.L. Ferrari, Finite Elements for Electrical Engineers,
Cambridge University Press, Cambridge, UK, 2nd edition, 1996.

[8] A.J. Moses and J. Liu, “Quantification of the accuracy of different
approaches to modelling anisotropy of grain oriented electrical steel,”
Journal de Physique IV, vol. 8, no. 2, pp. 595–598, 1998.

203Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



A Time Domain Homogenisation Technique for Laminated Iron Cores
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Abstract – The authors present a novel homogenisation technique for
laminated iron cores in 3D FE models of electromagnetic devices. It takes
into account the eddy currents in the individual laminations and the en-
suing skin effect. The insulating layers of finite width between the lami-
nations (fill factor � 1) are considered as well. The method is successfully
applied to the 3D FE model of a laminated ring core.

INTRODUCTION

When modelling electromagnetic devices comprising laminated
iron cores by means of the FE method, it is for practical reasons im-
possible to discretise each lamination separately. Homogenisation
techniques are to be used in order to account for the induced eddy
currents, the associated losses and the ensuing skin effect.

In [1] a homogenisation technique for 2D FE models has been
proposed. It is based on the 1D eddy current model of a lamination,
neglecting skin and edge effects, and has been extended to 3D FE
models in [2]. In the linear case, skin effect can be easily included in a
frequency domain analysis, adopting a frequency dependent complex
equivalent reluctivity [2].

In this paper, we present the time domain extension of the latter
frequency domain method. It is briefly elaborated in the following
section, and then applied to a test case.

LUMPED 1D LAMINATION MODEL

We consider a single lamination of thickness � ( � � � � 
 � 

� � � ), carrying a time varying induction � � � � � � along e.g. the � -axis.
The governing 1D differential equation in terms of � � � � � � � � � � � � � �
and the magnetic field ! � � � � � � ! � � � � � � � & � � � � � � reads:( ) !( � ) � +

( �( � � (1)

where the permeability , , the reluctivity & � , / 1 , and the electrical
conductivity + are constant. The resolution of (1) can be developped
either in the frequency domain [2] or the time domain [1], [2].

The quantities to be used in homogenisation techniques are the

average induction � 2 � � � � 14 4 6 )
/ 4 6 ) � � � � � � � � and the magnetic field

! 9 � � � � ! � � � ? � � � � � � on the surface of the lamination [1].
In the frequency domain, with frequency @ and pulsation A �

� C @ , an equivalent complex reluctivity D E F can be defined:

D E F
& �

G 9
& I 2 � � J

�
K M O Q � J R K M O � JT U K Q � J � T U K � J R W

K M O Q � J � K M O � JT U K Q � J � T U K � J � (2)

with
G 9 and I 2 the complex representation of the sinusoidal ! 9 � � �

and � 2 � � � respectively, W the imaginary unit, Y � � � + , A the pene-
tration depth, and � J � � � Y the relative lamination thickness [1].

An approximate time domain solution of (1) can be obtained by
considering a polynominal expansion of � � � � � � comprising even basis
functions ] ^ � � � =1, ] ) � � � � � 1) R a � � � � � )

, . . . , which are orthogo-

nal, 14
4 6 )

/ 4 6 ) ] c � � � ] d � � � � � � g if h j� l , and have unit value on the
lamination surface:

� � � � � � � ] ^ � � � � 2 � � � R ] ) � � � � ) � � � R o o o o (3)

The work has been carried out in the frame of the Interuniversity Attraction Poles
IAP P5/34, funded by the Belgian federal government. P. Dular is a Research Associate
with the Belgian National Fund for Scientific Research (F.N.R.S.).

Then, on account of (1), the magnetic field ! � � � � � is expanded as

! � � � � � � ! 9 � � � � + � ) q ) � � � � � 2
� � � + � ) q r � � � � � )

� � � o o o � (4)

with
q ) � � � � 1t � 1) � � � � � )

,
q r � � � � � 1w ) R 1r � � � � � ) � 1) � � � � �

r
.

When considering a finite number of basis functions, up to order y
for � � � � � � and order y R � for ! � � � � � , the linear (or nonlinear) consti-
tutive law ! � � � � & � cannot be fulfilled exactly. Its weak formulation
is given by4 6 )

/ 4 6 ) ! � � � � � � ! � � � � � � � ] | � � � � � � g � � � g � � � o o o o (5)

This leads for e.g. y � � to a system of two linear differential equa-
tions in terms of � 2 � � � , � ) � � � and ! 9 � � � :

! 9
g � &

� g
g 1�

� 2
� ) R + � ) 11 ) / 1� ^

/ 1� ^ 1) 1 ^
�

� �
� 2
� ) � (6)

where either � 2 � � � or ! 9 � � � are given functions of time. The equiva-
lent complex reluctivity (2) is thus approximated as:

D E F
& � � R

� � � J
r

� � � g R � g � J
r R W � J )

a �
� � J �

� a � a g R a g � J
r o (7)

The zero order model, y � g , considered in [1], [2], yields the first
term in both real and imaginary part of (7).
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Fig. 1: Equivalent complex reluctivity as a function of frequency, with � �� � �
mm,   � 5e6 S/m, ¢ £ � ¢ ¤ ¢ ^ � ¥ � � �

In Fig. 1, the zero and second order approximation, y � g and
y � � respectively, are compared to the analytical expression (2),
y � © . Allowing a maximum error of 5% for real and imaginary
part, the zero order model is valid up to � J � � o � a (250 Hz), the
second order model up to � J � ª o �

(2700 Hz).
Note that the above linear analysis also holds for a rotational flux

excitation. The superposition principle applies to the induction along
� and « axis, inducing eddy currents along « and � axis respectively.

In this 1D model, an infinitely wide lamination is considered. In
laminations of finite width, the eddy current loss density is lower. For
a width to thickness ratio of 20, e.g., the reduction is about 5% [1].

IMPLEMENTATION IN 3D FE MODEL

We consider a linear 3D eddy current problem, and its formulation
in terms of the magnetic vector potential ¬ , with � � T  ® ¯ ¬ . The weak
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form of Ampère’s law � � � � � 	 � reads

� � � � � � � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � � # � % � � & ( ) � + � � (8)

with � � - � the imposed current density in the subdomain + . and � 	
/ � � � � the induced current density in the conducting subdomain + 2 .

( ) � + � is the function space defined on + containing the basis func-
tions for � as well as for the test functions � � ; � 3 � 3 � � denotes the vol-
ume integral in + of the product of its vector field components [2].

We consider the case where + 2 consists of the laminations of a
stacked core (conductivity � , thickness 8 , magnetic reluctivity � :

� ; ). The insulating nonmagnetic and nonconducting layers, of thick-
ness < , between the laminations consitute a domain + = , which belongs
to + > + 2 . The fill factor of the stacked core thus is A 	 BB C D .

The formulation (8), as is, requires a fine discretisation of all
laminations and is likely to result in an unworkably large number
of unknowns. As an approximation, + 2 and + = can be replaced by
a homogeneous but magnetically and electrically anisotropic domain

+ F 	 + 2 H + = , for which a “normal” discretisation level suffices.
The induction and the magnetic field in + F can be decomposed

in two components which are either parallel or perpendicular to the
plane of the laminations: J 	 � � � � � 	 J L � J N and � 	 � L � � N .
In absence of eddy currents, the J and � components are related as
follows: � L 	 � L J L with � L 	 R R TU

V W X Z R C X R T
[ RX and � N 	 � N J N

with � N 	 A � � � _ / A � � ; . This amounts to a reluctivity tensor
� F 	 � L _ L � � N _ N , and � 	 � F J .

Let us now consider eddy currents in the laminations associated
with J L and � L . The corresponding fields in the above presented 1D

lamination model are J ) [ R c
R J L and � . 	 � L . The system (6) thus

becomes in terms of the average fields J 	 RR c J ) � J N , � 	 � . � � N J N
and J e f 	 R c

R J f :

�
g 	 � F

_ g
g Vh

J
J e f � � F V 8 f VV f W Vk ;

W Vk ; Vf V ;
8

8 -
J

J e f � (9)

with � F V 	 R c
R � _ L [ VX � _ L a conductivity tensor.

Induced eddy currents due to J N , resulting in a net current par-
allel to the laminations, can be readily taken into account in (8) by
replacing the integral over + 2 by one over + F , and by considering the
conductivity tensor � F f 	 A � _ L .

Combining (8) and the first equation of (9), the weak form of� � � � � 	 � is:

� � � � � � � � � � � � � � � � p � r � � � F � � � � � � � � � � � � � � r � � � F f � � � � � � � � r �
� � F V 8 f

_ w
� � � � � � � � � � � � � � � � r / � � F V 8 f

x g
� � J e f � � � � � � � � � r 	 � � � � � � � # �

(10)
while the weak form of the second equation in (9) is:

� � F
{ J e f � J e }f � � r / � � F V 8 f

x g
� � � � � � � � J e }f � � r � � � F V 8 f

w _ g
� � J e f � J e }f � � r 	 g �

(11)
A piecewisely constant interpolation of the vector quantity J e f in + F
can be obtained as follows. Two vector interpolation functions are
assigned to each element of + F , in which they have unit length and
are directed along either of two perpendicular directions in the plane
of the laminations; in the other elements they are identically zero.
Note that the continuity of (the normal component of) J e f , through
e.g. a magnetic vector potential � f , should not be imposed.

APPLICATION EXAMPLE

By way of illustration we consider an axisymmetric problem which
comprises a laminated ring core (20 laminations, 8 	 g � { mm, inner
radius 40 mm, outer radius 50 mm, � 	 { e6 S/m, � � 	 w { g g , sepa-

rated by 0.02 mm airgaps, i.e. A 	 g � � x ), a toroidal 100 turn coil and
the air between the ring core and the coil (Fig. 2). A volume mesh of
hexahedral and prismatic elements is obtained by circularly extruding
a 2D mesh of half of a radial cross-section (with the � � -plane) over
an angle � � (around the � -axis) in � steps.

Two meshes are considered. In the first one, with � � 	 w � � x �
and � 	 _

, each of the 10 laminations is finely discretised, allowing
the direct modelling of the eddy currents. In the second one, to be used
when applying the proposed homogenisation technique, with � � 	

w � � �
and � 	 _ x , the discretisation of + F is much coarser.

X
Y

Z

�

Fig. 2: FE models of the laminated ring core (with zoom of the fine discreti-
sation of the laminations)

Several dynamic simulations with an imposed triangular current
waveform of the same peak value but with different frequencies � ,
ranging from 50 Hz to 2000 Hz, and with both FE meshes are carried
out. One period, � g � � � with � 	 _ � � , is time stepped with backward
Euler and � - 	 � � _ g g . The flux linkage of the coil is calculated
by integrating � 3 � over + . . The flux vs. time curves obtained with
the fine FE model (with direct inclusion of the eddy currents) serve as
reference. Fig. 3 shows all obtained flux vs. time curves. The second
order homogenisation technique is shown to give quite satisfactory
results for all frequencies considered, while the zero order model is
only accurate up to 250 Hz.
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Fig. 3: Flux vs. time curves obtained with direct inclusion of the eddy cur-
rents and with zero and second order homogenisation

In the extended paper, the proposed method will be elaborated in
more detail and more results will be given.
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Abstract � This paper presents a methodology for determination of 
harmonic iron losses in laminated iron cores under non sinusoidal 
excitation. The methodology adopted is based on a particular 3D finite 
element model by using a reduced scalar potential formulation. Eddy 
currents in iron laminations are considered by means of convenient 
surface current densities. Experimental verification is performed by 
comparing computed and measured leakage field in an E-shape 
laminated core case. A convenient modification of induction motor 
equivalent circuit parameters is proposed enabling consideration of 
switching frequency iron losses in case of inverter supply.  

METHODOLOGY

Harmonic iron losses consideration due to eddy currents 
in laminated iron cores constitutes a complicated task, even in 
cases of cores with simple geometry. Such phenomena are 
even more complex in cases of electrical motors supplied by 
converters [1]. 

Adjustable frequency drives operating over a wide range 
of frequencies require accurate determination of the motor 
behavior in order to avoid possible consequences on the 
motor drive system and control units involved [3,4]. This can 
be implemented by combining equivalent circuit and detailed 
field calculations by means of utilizing appropriate finite 
element techniques [2,6]. 

However, the motor representation by the standard 
equivalent circuit may lead to inaccurate results, due to 
inappropriate evaluation of harmonic response and associated 
iron losses [9,10]. 

A first model for the consideration of harmonic iron losses 
in PWM inverter fed induction motors has been proposed [7], 
by using harmonic decomposition and superposition 
principle. This model is limited to steady state operating 
conditions and off line analysis. In the present work the 
authors present models appropriate for dynamic phenomena 
consideration and on line analysis. 

The methodology adopted is based on an approximate 
representation of eddy currents developed in iron laminations 
due to tangential magnetic field variation at switching 
frequency by using analytical formulae. Eddy currents in 
rotor cages as well as in iron laminations caused by time 
variations of leakage field oriented perpendicularly to the 
lamination position are simulated by convenient finite 
element techniques [5]. The proposed model enables 
harmonic iron losses representation as well as motor 

equivalent circuit parameter variations with switching 
frequency. 

Three dimensional eddy current problems have been 
successfully modeled by means of finite element  
formulations involving vector quantities [8]. On the other 
hand scalars, involving only one unknown per node of the 
mesh, seem to be more efficient. We have developed a 
particular scalar potential formulation enabling treatment of 
3D magnetostatics as well as 3D eddy currents developed in 
well defined paths [5]. 

According to our method the magnetic field strength H is 
conveniently partitioned to a rotational and an irrotational 
part as follows : 

��� -KH

where � is a scalar potential extended all over the solution 
domain while K is a vector quantity (fictitious field 
distribution), defined in a simply connected subdomain  
comprising the conductor, that satisfies Ampere's law and is 
perpendicular on the subdomain boundary. 

This technique can be applied in cases involving eddy 
currents developed in iron laminations due to harmonic  
frequencies, where the skin effect enables to express the 
corresponding induced surface current density JI as follows:  

t�
���

�

)T( nJI

where T is a scalar quantity existing only on the lamination 
surface while n is the unit normal to the lamination surface. 

RESULTS AND DISCUSSION

The new method’s efficiency and precision are checked by 
comparing the computed leakage field to the measured one in 
the case of an electromagnet formed by E and I shape parts 
separated by an air-gap of 1mm. When the excitation winding 
is supplied by a 50 Hz sinusoidal supply with 1000 A-t the 
measured losses are 22.5 W while the calculated ones are 
19.75 W. In case of supply by a PWM inverter with 
fundamental frequency 50 Hz and switching frequency 1 kHz  

(1)

(2)
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TABLE I 
COMPARISON OF MEASURED AND CALCULATED FLUX DENSITIES AND 

LOSSES

Waveform Meas.  
B (mT) 

Calc. 
 B (mT) 

Meas. 
Losses (W) 

Calc.  
Losses (W) 

sinusoidal 438 445 22.5 19.75 
Fs=1 kHz 471 463 40 38.5 
Fs=2 kHz 512 503 35 33.2 

the losses are almost doubled while a small reduction is 
obtained for a switching frequency of 2 kHz. The calculated 
losses for the same regimes are in quite good agreement with 
the measured ones, as shown in Table I. The flux density 
distribution on the surface of the magnetic circuit is given in 
Fig. 1. Table I compares also the computed and measured 
values of the flux density in the middle of the air gap. 

In a second case a three phase, two pole, 20 kW, 220 V 
squirrel cage induction motor has been considered. The high 
order harmonic losses are taken into account by conveniently 
modifying the two axes motor equivalent circuits. These 
circuits include newly defined resistances representing iron 
losses associated with stator and rotor leakage fluxes, placed 
in parallel with the corresponding leakage inductance terms. 

Fig. 2. One phase windings configuration at the end part of the machine.

Their determination involves evaluation of eddy currents 
developed at the end parts due to leakage fluxes. This can be 
obtained by using the proposed technique. The configuration 
of the windings at this region is shown in Fig. 2. Figure 3 
compares the measured no load current time variation with 
the simulated waveforms by using the classical and modified 
equivalent circuits, respectively. This figure illustrates that 
the modified equivalent circuit enables better representation 
of the iron saturation in the motor magnetic circuit.  
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Fig. 1. Flux density distribution (half core configuration) 
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Field Errors in SC Magnets Due to
Persistent Currents Generated by Arbitrary

Field Changes in the Transverse Plane
Martin Aleksa, Bernhard Auchmann, Stephan Russenschuck, Christine Völlinger

Abstract— Magnetic field changes in the coils of super-
conducting magnets are shielded from the filaments’ core
by so-called persistent currents which can be modeled by
means of the critical state model. This paper presents a
semi-analytical 2-dimensional model of the filament magne-
tization due to persistent currents for changes of the magni-
tude of the magnetic induction and its direction while taking
the field dependence of the critical current density into ac-
count. The model is combined with numerical field compu-
tation methods for the calculation of field errors in super-
conducting magnets. The filament magnetization and the
field errors in a nested orbit corrector magnet have been
calculated as an example.

Keywords— Bean model, Filament magnetization, Persis-
tent currents.

I. Introduction

THE Large Hadron Collider (LHC), will consist of
about 8400 superconducting (SC) magnet units of dif-

ferent types. The applied magnetic field induces currents
in the filaments of the SC coils that screen the external
field changes (so-called persistent currents). The filaments
are made of type II hard SC material with the property
that the magnetic field penetrates into the filaments with a
gradient that is proportional to the magnitude of the per-
sistent currents. Macroscopically, these currents are the
source of a magnetization �M( �B) in the strands. One way
to calculate this would be to mesh the coil with finite ele-
ments and solve the resulting non-linear field problem nu-
merically by making use of a measured �M( �B)-curve. This
approach has two main drawbacks: The numerical field
computation has to be combined with a hysteresis model
for hard superconductors, and the coil has to be discretized
with highest accuracy also accounting for the existing gra-
dient of the current density due to the trapezoidal shape of
the cables, the conductor alignment on the winding man-
drel, and the insulation layers. Hence, we aimed for com-
putational methods that avoid the meshing of the coil by
combining a semi-analytical magnetization model with the
BEM-FEM coupling method [3]. In order to account for
the feed-back of the filament magnetization on the mag-
netic field, an �M( �B)-iteration is performed. To describe
the persistent currents, the critical state model [2] is ap-
plied, which states that any external field change is shielded
from the filament’s core by layers of screening currents at
critical density jc(B, T ). The presented model differs from
other attempts to describe a SC filament’s response to ar-
bitrary field changes as, e.g., in [6]. It takes into account
the dependence of the critical current density on the ap-
plied external fiel and the resulting field distribution in

the filament cross-section. As a consequence, also low field
effects such as the peak-shifting (asymmetry in the magne-
tization curve for vanishing external field), magnetizations
due to minor loops and rotating external fields are repro-
duced by the model. The model introduced in [1] has been
extended to account for filament magnetizations due to ar-
bitrary field changes in the transverse plane.

II. Extended Persistent Current Model

Field changes on the surface of SC filaments induce lay-
ers of shielding currents of critical density jc(B) (B is the
magnitude of the penetrated magnetic induction inside the
filament). As in author’s paper [1], the induction shielded
by such layers is modelled by the integral over intersect-
ing circles, each carrying currents of critical density jc(B)
of opposite direction, compare Fig. 1. The relative pene-
tration q parameterizes linearly the filament cross-section,
assuming values between 0 on the outside and 1 in the cen-
ter of the filament. Thus, the magnitude of the shielding
induction vector ∆�t, generated by a layer between q1 and
q2 is given by

|∆�t | =
µ0r

2

∫ q2

q1

jc(B(q)) dq, (1)

with r the filament radius. Let �Bout (or �Bnew or �Bold)
denote the external magnetic field after an excitation step,
and �B(q) = �Bout+�t(q) the course of the magnetic induction
inside the filament. Note that, with |�t | = t and q1 = 0, the
differential of the shielding reads dt(q) = µ0r

2 jc(B(q)) dq,
compare (1) for (q2 − q1) → 0 and (4). The mathematical
task to resolve consists in the determination of: (a) the
vector function of the shielded induction (shielding vector)
�t(q) for a given excitation; (b) the penetration depth q∗

of a new shielding current layer, given a persistent current
distribution from preceding excitation steps, respecting the
continuity requirements:

�B(0) = �Bnew + �tnew(0)︸ ︷︷ ︸
0

= �Bnew, (2)

�B(q∗) = �Bnew + �tnew(q∗) = �Bold + �told(q∗); (3)

and (c) the resulting magnetization from a set of shield-
ing current layers. With the approximation of the criti-
cal current density around the working point given in [1],
jc(B) = F(Bout)√

B(q)
, a differential equation is derived for t(q)

dt 4
√

B2
out − 2Boutt(q) cos(α) + t(q) = µ0F(Bout)H dq, (4)
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where the geometrical factor H = 2r(1 − ln 2) = 0.614 r is
explained in [1] and the angle α between the external field
and the shielding vector is illustrated in Fig. 1. A solution
is found with the mathematica program [4] for the inverse
relation:

q(Bout, α, t) =
1

3 µ0F(Bout)H

[
Bout cos(α)

(
2
√

Bout (5)

+
√

Bout| sin(α)| 2F1

(
1
2
,
3
4
,
3
2
,− cot2 α

))

+ (t − Bout cosα)

(
2

(
B2

out + t2 − 2Boutt cosα
)1/4

+
√

Bout| sin α| 2F1

(
1
2
,
3
4
,
3
2
,− (t − Bout cosα)2

sin2 αBout

))]
,

where 2F1 denotes the Gauss’ Hypergeometric function.
The function for t(Bout, α, q) is obtained by a Newton al-
gorithm.

An equation system to solve task (b) is derived from
the continuity equations (2-3) and from geometric con-
siderations. A 3-dimensional Newton algorithm yields
αnew, tnew(q∗), and told(q∗), so that, with (4) and (5), the
course of the magnetic induction is defined:

�B(q) =
{

�Bnew + �tnew(Bnew, αnew, q), 0 ≤ q < q∗
�Bold + �told(Bold, αold, q), q∗ ≤ q < 1.

(6)

The magnetization of one shielding layer between pen-
etration depths qi and qi+1 is given by �Mi =
4r
π

∫ qi+1

qi
jc(B(q))(1 − q)2 �eti dq, where �eti denotes the di-

rection of the corresponding shielding vector �ti(q). Figure
1 illustrates the transition from a field change in only one
direction, discussed in [1], to field changes in arbitrary di-
rections.
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Fig. 1. SC filament exposed to a (left): 1-dimensional field change
and (right): a 2-dimensional field change. In both cases, the field
change was preceded by an up-ramp of magnetic induction on the
outside. The course of the current density over the cross-section is
parameterized by the shading of the individual layers. For the con-
tinuous model, the thickness of these layers thrives to zero.

III. Combining the Model with Numerical Field
Calculation

For the calculation of persistent current induced field
errors in SC accelerator magnets with a ferromagnetic yoke,

the magnetization model is combined with the BEM-FEM
coupling method, which accounts for the local saturation
effects in the yoke [3]. In order to calculate global shielding
effects in the coil (in particular at low excitations), the feed
back of the persistent currents on the excitational field is
calculated by means of an �M( �B)-iteration on the strand
level.

The MCBXA is a combined single aperture concentric
(nested) dipole corrector, with one horizontal MCBXH (in-
side) and one vertical MCBXV (outside) associated to the
quadrupoles Q1 and to Q2 in the insertion regions of the
LHC. Inside the aperture of the nested dipole an insert with
a nested sextupole and dodecapole is installed, see fig. 2
left. A somewhat academic excitational cycle is considered
(which will serve the purpose of validating the model with
measurements). First the outer layer coil is powered to a
fifth of its nominal current and then the outer layer dipole
follows a cosine and the inner layer dipole a sine like exci-
tation. This way the resulting field rotates clockwise with
about constant magnitude. The insert with the sextupole
and dodecapole coil is not powered. Fig. 2 right shows
the amplitude of the sextupole field component (the first
higher multipolar field error in a dipole coil) as a function
of the field direction in the aperture. Measurements of a
prototype magnet are underway and will be used for the
validation of the model presented in the paper.
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Fig. 2. Left: MCBXA orbit corrector with multipole insert (display
of field modulus in the iron yoke). Right: Amplitude of the sextupole
field component (in T) as a function of the field direction in the
aperture of the MCBXA magnet.
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